Pitch quartered three-dimensional air gaps

    公开(公告)号:US11152254B2

    公开(公告)日:2021-10-19

    申请号:US16463816

    申请日:2016-12-28

    Abstract: An integrated circuit die, a semiconductor structure, and a method of fabricating the semiconductor structure are disclosed. The integrated circuit die includes a substrate and a first anchor and a second anchor disposed on the substrate in a first plane. The integrated circuit die also includes a first wire disposed on the first anchor in the first plane, a third wire disposed on the second anchor in the first plane, and a second wire and a fourth wire suspended above the substrate in the first plane. The second wire is disposed between the first wire and the third wire and the third wire is disposed between the second wire and the fourth wire. The integrated circuit die further includes a dielectric material disposed between upper portions of the first wire, the second wire, the third wire, and the fourth wire to encapsulate an air gap.

    THIN-FILM TRANSISTORS WITH LOW CONTACT RESISTANCE

    公开(公告)号:US20200235246A1

    公开(公告)日:2020-07-23

    申请号:US16647679

    申请日:2018-01-10

    Abstract: Techniques are disclosed for forming thin-film transistors (TFTs) with low contact resistance. As disclosed in the present application, the low contact resistance can be achieved by intentionally thinning one or both of the source/drain (S/D) regions of the thin-film layer of the TFT device. As the TFT layer may have an initial thickness in the range of 20-65 nm, the techniques for thinning the S/D regions of the TFT layer described herein may reduce the thickness in one or both of those S/D regions to a resulting thickness of 3-10 nm, for example. Intentionally thinning one or both of the S/D regions of the TFT layer induces more electrostatic charges inside the thinned S/D region, thereby increasing the effective dopant in that S/D region. The increase in effective dopant in the thinned S/D region helps lower the related contact resistance, thereby leading to enhanced overall device performance.

Patent Agency Ranking