Abstract:
The invention provides is a process for producing a structure (22) with a metal film, including the steps of preparing a mother die (10) in which a first metal film (16) is formed on the surface of a base (12) on which a concave and convex pattern (14) is formed, forming a second metal film (18) on the first metal film (16), adhering a support member (20) to the second metal film (18), and separating the second metal film (18) to which the concave and convex pattern has been transferred to the second metal film (18) together with the support member from the first metal film (16). Preferably, the first metal film (16) is a film containing Cr and Al, and the second metal film (18) is a film containing at least one metal selected from the group consisting of Au, Ag, Cu, Al, and Pt.
Abstract:
Electronic components differing in height (a CPU 2a, a capacitor 2b, and coil elements 2c) are mounted on a printed circuit board 1. A heat-absorbing member 3 is provided above the printed circuit board 1 in such a way that the member 3 contacts not only the top surface of the CPU 2a that is the shortest but the sides of the capacitor 2b and the coil elements 2c. To circulate a cooling medium, a flow path 4 is formed in the heat-absorbing member 3. Heat generated at the CPU 2a is transmitted from its top surface to the cooling medium in the flow path 4 via the heat-absorbing member 3; heat generated at the capacitor 2b and the coil elements 2c is transmitted from their sides to the cooling medium in the flow path 4 via the heat-absorbing member 3.
Abstract:
A body flow path in a first housing having an MPU element communicates with an inner flow path and outer flow path formed in an inner heat-dissipating board and an outer heat-dissipating board, respectively, and a pump drives a cooling liquid to circulate in these flow paths. A beam is arranged between a pivot provided in a second housing and a pivot provided in the inner heat-dissipating board, a beam is arranged between the pivot of the inner heat-dissipating board and a pivot provided in the outer heat-dissipating board, and the inner heat-dissipating board and the outer heat-dissipating board are movable to the second housing. According to the operation of opening the second housing, a distance between the second housing and the inner heat-dissipating board, and a distance between the inner flow path and the outer flow path are increased.
Abstract:
A body flow path in a first housing having an MPU element communicates with an inner flow path and outer flow path formed in an inner heat-dissipating board and an outer heat-dissipating board, respectively, and a pump drives a cooling liquid to circulate in these flow paths. A beam is arranged between a pivot provided in a second housing and a pivot provided in the inner heat-dissipating board, a beam is arranged between the pivot of the inner heat-dissipating board and a pivot provided in the outer heat-dissipating board, and the inner heat-dissipating board and the outer heat-dissipating board are movable to the second housing. According to the operation of opening the second housing, a distance between the second housing and the inner heat-dissipating board, and a distance between the inner flow path and the outer flow path are increased.
Abstract:
This invention relates to an efficient surface processing method. In one embodiment of the invention, a laminated body 4 comprising a sample material 1, an intermediate layer 2 formed on a surface of the sample material 1, and an SOG layer 3 formed on the surface of the intermediate layer 2 is used. First, the surface of the SOG layer 3 is irradiated with an electron beam so as to expose part of the SOG layer. Next, exposed parts 31 of the SOG layer 3 are eliminated by etching. As a result, finely detailed unevenness can be formed at the surface of the SOG layer 3. The depth of the exposed parts 31 can be controlled by changing the acceleration voltage of the electron beam. It is therefore possible to form three-dimensional shapes of different depths. After forming unevenness at the surface of the SOG layer 3, the intermediate layer 2 and the sample material 1 can be eliminated in order using, for example, an oxygen ion beam. As a result, the same unevenness as at the surface of the SOG layer 3 can be formed at the surface of the sample material 1.
Abstract:
A raised portion 12 is formed on a substrate 10. The raised portion consists of a raised support pattern that preferably includes a wiring pattern. A sheet 30 is supported by the top surfaces of the raised support pattern such that the sheet is maintained apart from the base surface of the substrate 10. A semiconductor die 40 is adhered onto the sheet 30 using an adhesive agent 42. A sealant is used to create a sealed portion 50 that seals the semiconductor die 40 on the sheet 30. The sheet 30 has gas permeable region at least at a location accessible by the adhesive agent.
Abstract:
A tape winding apparatus for winding tape supplied from a tape reel mounted upon a supply reel base onto at least one empty takeup reel contained in a cartridge case having an opening at a part thereof, comprises a cartridge holder for holding and positioning the cartridge case, a winding shaft for revolving the takeup reel of the cartridge case, a tape retainer capable of retaining a beginning portion of the tape, the tape retainer bringing the beginning portion of the tape from within the vicinity of the opening provided on the cartridge case to the interior of the cartridge case close to the takeup reel, while holding the beginning portion of the tape, and a coating arrangement for applying an adhesive to the beginning portion of the tape retained on the tape retainer, whereby securing of the tape to the takeup reel can be achieved. A tape winding method comprises the steps of positioning the cartridge case, applying an adhesive to the beginning portion of the tape retained upon the tape retainer, thereby adhering the tape to the takeup reel, bringing the beginning portion of the tape from the opening provided on the cartridge case to the interior of the cartridge case close to the takeup reel, securing the beginning portion of the tape to the takeup reel, and revolving the takeup reel.