Abstract:
An image decoding method according to the present document includes obtaining motion prediction information for a current block from a bitstream, generating an affine MVP candidate list for the current block, deriving CPMVPs for CPs of the current block based on the affine MVP candidate list, deriving CPMVDs for the CPs of the current block based on the motion prediction information, deriving CPMVs for the CPs of the current block based on the CPMVPs and the CPMVDs, and deriving prediction samples for the current block based on the CPMVs.
Abstract:
The present disclosure relates to a method by which a decoding apparatus performs video coding, comprising the steps of: generating a motion information candidate list for a current block; selecting one candidate from among those included in the motion information candidate list; deriving control point motion vectors (CPMVs) of the current block based on the selected candidate; deriving sub-block-unit or sample-unit motion vectors of the current block based on the CPMVs; deriving a predicted block based on the motion vectors; and reconstructing a current picture based on the predicted block, wherein the motion information candidate list includes an inherited affine candidate, the inherited affine candidate is derived based on candidate blocks coded by affine prediction, from among spatial neighboring blocks of the current block, and the inherited affine candidate is generated up to a pre-defined maximum number.
Abstract:
A picture decoding method implemented by a decoding device, according to the present invention, comprises the steps of: acquiring motion prediction information from a bitstream; generating an affine MVP candidate list comprising affine MVP candidates for the current block; deriving CPMVPs for the respective CPs of the current block on the basis of one affine MVP candidate among the affine MVP candidates included in the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of information on the CPMVDs for the respective CPs included in the acquired motion prediction information; and deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs.
Abstract:
Disclosed herein is a method for performing communication using Bluetooth low energy (BLE) in a wireless communication system including a server device and a client device. The client device receives object changed indication information including object identification information indicative of a changed object from the server device. The object identification information includes the name of the changed object or the identifier (ID) of the changed object.
Abstract:
The present invention relates to a method and apparatus of calculating a location of an electronic device. The present invention comprises receiving a common packet from a host device, the common packet containing at least any one of frequency-related information or information on a time when a data packet is transmitted; receiving the data packet based on the information contained in the common packet, the data packet containing at least any one of location-related information or antenna-related information of the host device; obtaining angle information indicating a location relation with the host device using at least any one of the location-related information or the antenna-related information of the received data packet; and calculating the location of the electronic device based on the angle information.
Abstract:
An image decoding method performed by a decoding device according to the present disclosure comprises the steps of: obtaining motion prediction information relating to a current block from a bitstream; generating an affine MVP candidate list for the current block; deriving CPMVPs for CPs of the current block on the basis of the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of the motion prediction information; deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs; and deriving prediction samples for the current block on the basis of the CPMVs.
Abstract:
Disclosed is an inter prediction method which includes deriving control points (CPs) for the current block, wherein the CPs include a first CP and a second CP, deriving a first motion vector predictor (MVP) for the first CP and a second MVP for the second CP based on neighboring blocks of the current block, decoding a first motion vector difference (MVD) for the first CP, decoding a difference of two MVDs (DMVD) for the second CP, deriving a first motion vector (MV) for the first CP based on the first MVP and the first MVD, deriving a second MV for the second CP based on the second MVP and the DMVD for the second CP, and generating a predicted block for the current block based on the first MV and the second MV.