Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method of transmitting a data frame by a station in a wireless local area network (WLAN), A station obtains a transmission opportunity (TXOP) for a bandwidth. The TXOP indicates an interval of time during which the station has a right to initiate frame exchange sequences onto a wireless medium. The station selects a transmit bandwidth parameter of a non-initial data unit of a plurality of data units from available bandwidth parameters. The available bandwidth parameters include a first available bandwidth parameter which is same as a transmit bandwidth parameter of a preceding data unit of the plurality of data units and a second available bandwidth parameter which is narrower than a transmit bandwidth parameter of the preceding data unit. The station transmits, during the TXOP, the non-initial data unit according to the transmit bandwidth parameter of the non-initial data unit.
Abstract:
A method for transmitting a reference signal for channel measurement (CSI-RS) to a user equipment; a base station therefore; a method for receiving a CSI-RS; and the user equipment therefore are discussed. The method for transmitting a CSI-RS according to one embodiment includes transmitting CSI-RS pattern information for indicating a pattern of time-frequency resource to be nulled, hereinafter referred to as null CSI-RS pattern, and CSI-RS subframe information for indicating in which subframe the null CSI-RS pattern occurs; and nulling a time-frequency resource corresponding to the null CSI-RS pattern in a subframe corresponding to the CSI-RS subframe information, hereinafter referred to as null CSI-RS subframe, based on the CSI-RS pattern information and the CSI-RS subframe information. The CSI-RS subframe information includes information indicating a periodic interval with which the null CSI-RS subframe occurs. The periodic interval corresponds to a plurality of subframes.
Abstract:
A method and terminal are described for allocating resources for transmitting a signal in a multiple-input multiple-output (MIMO) wireless communication system. An uplink signal is transmitted using L layers at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. Modulation symbols are generated by modulating output bit sequences of an interleaver matrix by a unit of log2Q bits, where Q is a modulation order. Each of the output bit sequences has a size of L·log2Q bits. The modulation symbols are mapped to the L layers and transmitted by using the L layers. The output bit sequences are generated by reading out entries of the interleaver matrix, column by column.
Abstract:
A method for transmitting and receiving uplink signals using an optimized rank 3 codebook is disclosed. The optimized rank 3 codebook includes 6 precoding matrix groups, each of which has 1 variable having an amplitude of 1. Preferably, the optimized 4Tx rank 3 codebook has 12 preceding matrix, two precoding matrixes are selected from each the above 6 precoding matrix groups considering chordal distance and the number of precoding matrix.
Abstract:
A method of transmitting a training signal in a Wireless Local Area Network (WLAN) system includes generating one or more first training signals for a first destination station and one or more second training signals for a second destination station by applying a mapping matrix P to a training signal generation sequence, mapping the first training signals and the second training signals to a plurality of antennas according to an antenna mapping matrix, and performing Inverse Fast Fourier Transform (IFFT) on each of the first training signals and the second training signals mapped to the plurality of antennas and transmitting the training signals through the plurality of antennas.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method and terminal apparatus are described for performing channel interleaving at a terminal in a multiple-input multiple-output (MIMO) wireless communication system. A number of columns C of an interleaver matrix are assigned as a number of symbols for transmitting data per subframe (Nsymb). A number of rows R of the interleaver matrix is defined as H · L · log 2 Q C , where H is a number of modulation symbols per layer, L is a number of layers and Q is a modulation order. Input vector sequences are written into entries of the interleaver matrix, row by row. Each of the entries has a size of L·log2Q bits. Output bit sequences are generated by reading out the entries of the interleaver matrix, column by column. The output bit sequences are modulated by a unit of log2Q bits, to generate modulation symbols. The modulation symbols are mapped to the L layers, and transmitted by using the L layers.
Abstract:
A method for transmitting a sounding reference signal in a MIMO wireless communication system and an apparatus therefor are disclosed. The method for transmitting sounding reference signals (SRSs) in a MIMO wireless communication system comprises receiving sounding reference signal parameters from a base station; receiving information of the number of sounding reference signals which will be transmitted at a transmission time instant from the base station; if a plurality of sounding reference signals are provided, generating the sounding reference signals corresponding to each of the plurality of antennas by using the sounding reference signal parameters; and transmitting the generated sounding reference signals to the base station through their corresponding antennas at a specific transmission instant.
Abstract:
There is provided a method of transmitting control information in a Wireless Local Area Network (WLAN) system, comprising transmitting first control information by means of cyclic shift delay diversity beam-forming and transmitting second control information. The first control information comprises information necessary for each of a plurality of target stations of the second control information to receive the second control information. The second control information beamformed and transmitted to the plurality of target stations.