Abstract:
Abstract: A wireless access point (200), upon determining (101) that a need exists to support a communication need of a mobile station, acquires (102) a first Internet Protocol (IP) address and automatically transmits (103) a gratuitous Address Resolution Protocol message to a local router to thereby cause the latter to correlate the first IP address to a Medium Access Control address for the wireless access point. In a preferred embodiment the wireless access point can also automatically transmit a registration request to a remote network element (such as a Home Agent) that presents this first IP address as a care-of address to use in conjunction with another IP address that serves as a home address for the mobile station.
Abstract:
An apparatus and method for generating compressed SIP messages from full sized SIP messages and vice versa in order to decrease call set up time in an IP based communication system. During registration of a device, the invention caches the device's static information in the core network in a "Registrar/Location Server." Subsequently, during call set up, the device transmits its dynamic information to the SIP Agent in a compressed SIP message over an air interface. The SIP Agent retrieves the static information (from the Registrar/Location Server) along with the dynamic information in the compressed SIP message to generate a full sized SIP message. The SIP Agent forwards the full sized SIP message to a SIP Proxy, which is then transmitted to the IP system. Likewise, when a full sized SIP message is received from the IP system, the message is forwarded to the SIP Agent to generate a compressed SIP message for ultimate transmission to the device over the air interface.
Abstract:
A method for prioritizing Mobile IP between PMIP and CMIP includes the steps of connecting a mobile device (118) to a communication network (102) and determining (308) if the network provides mobility control, such as the network being PMIP-enabled. When it is determined that the network provide mobility control, the mobility function is assigned (312) to the network and is therefore given priority over the mobility function provided by the mobile device. It can be determined (304) that the mobile station also includes a mobility control so that when the network is not PMIP-enabled the mobile station controls (314) layer 3 mobility and the Mobile IP function.
Abstract:
A method and apparatus for transmitting packets in a wireless communication system (100). The method and apparatus determining a delay period from among the various delay times at each of a plurality of access nodes (106-110) wherein the delay time is the time it takes for a node to receive a data packet from a source (102) through a network (104). During transmission of data from the source, the nodes receive data packets and from the data packets, the wall clock time is determined. The packets are transmitted from the nodes at a time equivalent to the wall clock time and the delay period so that the packets are synchronously transmitted from the multiple nodes.
Abstract:
A method (1700) and apparatus (1801) provide channel estimation with extended bandwidth filters. Antenna (1813) receives a signal such as a pilot signal and detects a bandwidth associated with the pilot signal in a detector (320). One of a plurality of filters (603, 605, 607, and 609) including extended bandwidth filters (311) and a default filter (305) can be selected by a selector (617). If the detector detects activity associated with a wider bandwidth, the filter associated with the wider bandwidth is selected over the presently selected filter. If no activity is detected, the default filter is selected.
Abstract:
A secured message indicates that a node (104) in a network (102) is operating correctly and detecting that the node is compromised such that a device (106) should not communicate with the node. When the node is detected to be compromised, the secured message ceases to be transmitted to the node and the device. The secured message may include a time stamp portion and a security portion. A secured timestamp server (110) includes a transceiver (202) that receives notifications from a network management server (108) and transmits secured messages for use by the device. A processor (204) provides the secured message with a time stamp portion and a security portion when notifications indicate a node in the network is properly operating and ceases the transmission of the secured message when notifications indicate that the node is compromised.
Abstract:
A method and a system for scheduling requests generated for a plurality of mobile devices in a communication network (100) has been disclosed. The requests are generated for a transmission opportunity. The method includes computing a sort metric (302) for each request, based on an information update. A lead-time is then computed (304) with respect to a drop-dead time for each request, based on the sort metric for a time slice. The drop-dead time for a given time slice is the time before which scheduling has to be done so that data can be transmitted during the given time slice. Each request may be considered (306) for allocation in the time slice before the beginning of a next time slice, based on the lead-time.
Abstract:
A communication system (200) that includes multiple nodes (202, 210) controls a flow of data from a first node (202) to a second node (210) without relying on an estimate of a rate at which data is drawn from a buffer (216) of the second node and such that an overflow and an underflow of the buffer is avoided. The second node determines multiple flow control parameters, including a current occupancy (Q) of the buffer and an upper threshold (U) and a lower threshold (L) for an occupancy of the buffer and determines a desired data rate (r) based on the multiple flow control parameters. The desired data rate can be used to adjust a data rate for the flow of data. In another embodiment, the communication system further dynamically controls a rate at which flow control messages are conveyed by the second node to the first node.
Abstract:
A communication system (200) that includes multiple nodes (202, 210) controls a flow of data from a first node (202) to a second node (210) without relying on an estimate of a rate at which data is drawn from a buffer (216) of the second node and such that an overflow and an underflow of the buffer is avoided. The second node determines multiple flow control parameters, including a current occupancy (Q) of the buffer and an upper threshold (U) and a lower threshold (L) for an occupancy of the buffer and determines a desired data rate (r) based on the multiple flow control parameters. The desired data rate can be used to adjust a data rate for the flow of data. In another embodiment, the communication system further dynamically controls a rate at which flow control messages are conveyed by the second node to the first node.
Abstract:
A method and apparatus for transmitting packets in a wireless communication system (100). The method and apparatus determining a delay period from among the various delay times at each of a plurality of access nodes (106-110) wherein the delay time is the time it takes for a node to receive a data packet from a source (102) through a network (104). During transmission of data from the source, the nodes receive data packets and from the data packets, the wall clock time is determined. The packets are transmitted from the nodes at a time equivalent to the wall clock time and the delay period so that the packets are synchronously transmitted from the multiple nodes.