Abstract:
In an Orthogonal Frequency Division Multiplexing communication system (100), a user equipment (102, 104) reports channel quality information that is sufficient to construct a fading profile of a frequency bandwidth and that does not consuming the overhead resulting from the reporting of CQI for every sub-band of the frequency bandwidth. In the communication system, the frequency bandwidth (320) may be represented by multiple sub-band levels (n), wherein each sub-band level comprises a division of the frequency bandwidth into a number of sub-bands different from the number of sub-bands of the other sub-band levels. The user equipment measures a channel quality associated with each sub-band of a sub-band level of the multiple sub-band levels, selects a sub-band of the sub-band level based on the measured channel qualities, and reports channel quality information associated with the selected sub-band to a radio access network.
Abstract:
A system and method for to establish a wireless group call from one of a plurality of communication units to others communication units includes a first step of receiving, from a requesting communication unit a request for a group call with other communication units of the group. A next step includes allocating a common downlink channel for the group call. A next step includes allocating a dedicated uplink channel for the requesting communication unit. A next step includes switching one of the communication units between the common channel mode and a dedicated channel mode depending upon performance criteria.
Abstract:
A communications network (200) for enhanced uplink of High-Speed Uplink Packet Access (HSUPA) in 3G wireless communications includes a mobile transceiver unit (605). The mobile transceiver unit is operable to use a channel prediction to estimate a power margin of one or more dedicated channels, predict a power margin for an acknowledgement transmission based on transmission parameters, reserve a power margin for a channel quality indicator (CQI) transmission, and determine an Enhanced Transport Format Combination (E-TFC) for an uplink data packet transmission based on an available power margin. The communications network also includes a communications network node (610) operable to transmit a power control signal to the mobile transceiver unit.
Abstract:
Various embodiments are described to address the need for an apparatus and method of outer-loop power control for enhanced uplink communications that address some of the outstanding problems in the prior art. Generally expressed, a base site (131), while a first uplink channel is inactive, monitors packet retransmissions to generate an uplink quality indicator. Here, packet retransmissions refers to the number of packet retransmissions used by a remote unit (101) to send packets to a base transceiver station (111) via at least one other uplink channel. Also, while the first uplink channel is inactive, the base site adjusts a signal-to-interference ratio (SIR) target for the first uplink channel based on the uplink quality indicator. Then, when the first uplink channel becomes active, the base site begins power controlling the first uplink channel using the SIR target.
Abstract:
To address the need to convey ACK/NACK information in a manner that conserves system and signaling resources, embodiments of the present invention employ a Node-B transmitting on two types of ACK/NACK broadcast channels (501, 502), one type for received uplink data that was scheduled by the Node B and the other type of broadcast channel for received uplink data that was not scheduled by the Node B. Other embodiments of the invention employ a Node-B transmitting on two types of broadcast channels, one type of broadcast channel for received uplink data that comes from non-SHO users and another type of broadcast channel for received uplink data that comes from non-scheduled users or comes from scheduled SHO users. In addition, ACK/NACK information is scheduled (800) into the available broadcast channel time slots in accordance with a transmission priority that is determined by a scheduler.
Abstract:
In a mobile telecommunication system (10), a number of user equipments (40-45) may receive multimedia broadcast multicast services. The method for power allocation and user assignment for MBMS services determines any number (K) of user equipments which may be served without complete cell area coverage (78). For more than K user equipments (40-45) requesting MBMS services, dedicated channels are assigned (84). For user equipments requesting MBMS service during a broadcast, such user equipment is assigned to the channel (broadcast or dedicated) with the lower power requirement, if power is available. If the user is assigned to the broadcast channel, and power is available, power of the broadcast channel is adjusted (108). Otherwise, the power of the broadcast channel is increased and no further power is indicated as being available (112).
Abstract:
A system ( 100 ) and methods ( 400, 500 ) for alerting user equipment devices ( 116 ) in a wireless communication network ( 102 ) to broadcasts while limiting the amount of power that must be consumed in order to ascertain if the user equipment devices ( 116 ) have subscribed to the broadcasts are provided. A communication indicator ( 300 ) that is compatible with UMTS protocols and includes, in addition to paging indicators, one or more broadcast category indicator codes ( 304 ) is provided. Devices receiving the communication indicator ( 300 ) are able to ascertain based on the broadcast category indicator codes ( 304 ) whether there is a need to expend further power in determined whether they are subscribed to the broadcast.
Abstract:
"redundância incremental com base em código turbo aprimorado". uma redundância incremental aprimorada com base em código turbo inclui uma primeira etapa (102) de perfurar um fluxo de dados para uma primeira transmissão e fornecer um conjunto de primeira seção de treliça não perfurada. uma etapa seguinte (104) inclui perfurar um fluxo de dados para uma segunda transmissão para fornecer um conjunto de segundas seções de treliça não perfuradas. a etapa seguinte (106) inclui a redundância incremental combinando a primeira e a segunda transmissões das treliças para fornecer a primeira e segunda seções de treliça não perfuradas e não adjacentes. a disposição acima resulta em uma distribuição uniforme de bits perfurados e não perfurados para fornecer erros mais baixos.