Abstract:
The invention relates to an imaging system for imaging a region of interest comprising a moving object, which moves less in small motion phases than in large motion phases. Detection values are provided and a small motion determination unit (15) determines the motion of the object in the region of interest in the small motion phases from the 5 detection values. A large motion determination unit (16) determines the motion of the object in the large motion phases from the determined motion of the object in the small motion phases. A reconstruction unit (17) reconstructs an image of the region of interest from the detection values, wherein the reconstruction unit (17) is adapted for performing a motion compensation using the determined motions in the small and large motion phases.
Abstract:
The invention relates to an X-rayimaging system (100) like a CT-scanner. In a preferred embodiment of the system, a cylindrical X-raydetector(130) is sandwiched between two cylindrical X-raysources (110, 120) or vice versa. The X-raysources preferably comprise cathodes with carbon nanotubes and a multitude of focal spots(111) that can selectively be controlled. The cylinder-diameters of the X-raysource and the X-raydetector may be the same or, preferably, be different. Moreover, the X-raysource and the X-ray detector preferably extend circumferentially over less than the full angle of 360°.
Abstract:
The present invention relates to an imaging system for imaging a field of interest, in particular to a computed tomography system. The imaging system comprises an irradiation unit (2) which moves relative to a field of interest along a first trajectory (501) and along a second trajectory (503). While the irradiation unit (2) moves along the first trajectory (501), first detection data are acquired and, while the irradiation unit (2) moves along the second trajectory (503), second detection data are acquired. An intermediate image of the field of interest is reconstructed from at least the second detection data, and virtual detection data are determined by forward projection through the intermediate image. Finally, an image of the field of interest is reconstructed from the first detection data and the virtual detection data.
Abstract:
The increasing cone angle of current high-end and future CT systems leads to a decrease in image quality if approximate cone-beam reconstruction methods are used. According to an exemplary embodiment of the present invention, an iterative four-dimensional cardiac CT reconstruction is provided, in which phase volumes are selected from the four-dimensional data set, each having the same spatial volume at different phase points. Corresponding voxels inside these phase volumes are then forward projected onto the same projection. After calculation of a different projection, these voxels are updated. This may provide for an efficient implementation of an iterative four-dimensional cardiac cone-beam CT reconstruction.
Abstract:
According to an exemplary embodiment a method for movement compensation of image data of an object of interest comprises receiving projection data, receiving motion vector field data, and dividing the motion vector field data into a number of layers of motion vector field data. Furthermore, the method comprises generating motion compensated projection data by projecting at least one of the number of layered motion vector field data onto the projection data and applying a two dimensional motion compensation on the projection, and generating image data of at least one voxel by back-projecting the movement compensated projection data.
Abstract:
The invention relates to a method and a device for the three-dimensional reconstruction of the flow conditions in a vascular system (3), in which, in a first phase after the beginning of a contrast-medium injection, X-ray projection pictures are produced from the same direction (A) at a high picture-taking rate in order to observe the inflow of the contrast medium. When the contrast medium fills the vascular system (3), a rotation of the Xray device (1) takes place during which projection pictures are produced at a lower picturetaking rate and/or at a lower radiation dose, from which pictures the three-dimensional structure of the vascular tree can be reconstructed. Optionally, at the end of the rotation, projection pictures may again be taken from a fixed direction that observe the drainage of the contrast medium from the vascular system (3).
Abstract:
The present invention relates to a sensor device for detecting dose of radiation received at the sensor device, the sensor device comprising a flexible body having a cross- section being comparatively small relative to the length of the device, a cladding at the flexible body, the cladding converting incoming radiation into visible light, and an optical shape sensing device disposed within the flexible body and configured to determine a shape of the flexible instrument relative to a reference, the shape sensing device configured to collect information based on its configuration to map an intraluminal structure during a procedure. The present invention further relates to a radiation therapy system including such a sensor device and a method of operating a radiation therapy system including such a sensor device.
Abstract:
Computed tomography (CT) reconstruction includes reconstructing an axially extended reconstructed image from a measured cone beam x-ray projection data set (Pm), optionally having an off-center geometry. The reconstructing is performed for an extended volume (eFOV) comprising a reconstructable volume (rFOV) of the measured cone beam x ray data set that is extended along the axial direction. The projection data set may be weighted in the volume domain. Iterative reconstruction may be used, including initializing a constant volume and performing one or more iterations employing a first iterative update followed by one or more iterations employing a second, different iterative update. Alternatively, backprojection filtration (BPF) reconstruction may be used, including transforming the projection data set to a new geometry including finite differences between neighboring projection views and performing BPF using Hilbert filtering along a plurality of different directions and averaging the resultant reconstructed images to generate the final reconstructed image.
Abstract:
The present invention relates to an apparatus for generating an image of a moving object, wherein a movement of the object comprises a multiple of moving phases. The apparatus comprises a measured detection data providing unit (20) for providing measured detection data of the moving object, which have been detected by using a detection process and which are assigned to the moving phases. The apparatus comprises further a reconstruction unit (13) for reconstructing an image object of the object from the provided measured detection data and an adaptation unit (18) for adapting the image object for different moving phases such that simulated detection data are adapted to the measured detection data of the respective moving phase, wherein the simulated detection data are determined by simulating the detection process, which has been used for detecting the measured detection data assigned to the respective moving phase, with the image object.
Abstract:
It is described a method for coronary artery selective calcium assignment by computed tomography, wherein the method comprising the steps of performing a low x-ray dose cardiac calcium scoring scan, obtaining a data set of said cardiac calcium scoring scan, generating reconstructed images from the data set of said cardiac calcium scoring scan, analyzing the reconstructed images for segmented calcium deposits, deriving a data set of calcification from the analysis, wherein a cardiac model is adapted to the reconstructed image such that segmented calcium deposits can be assigned to specific areas of the heart. Further a device (100) for performing a method for coronary artery selective calcium assignment by computed tomography according to the inventive method is described, wherein the device (100) comprises a CT unit (10) for performing a low x-ray dose cardiac calcium scoring scan; an acquisition unit (20) for obtaining a data set of said cardiac calcium scoring scan; a generation unit (30) for generating reconstructed images from the data set of said cardiac calcium scoring scan; an analyzing unit (40) for analyzing the reconstructed images for segmented calcium deposits; a deriving unit (50) for deriving a data set of calcification from the analysis.