Abstract:
The invention relates to a method (100) of adapting a geometric model to an image data comprising determining a first partial transformation for mapping a first part of the geometric model into the image data and a second partial transformation for mapping a second part of the geometric model into the image data. By determining the first partial transformation of the first part of the geometric model and the second partial transformation of the second part of the geometric model, the geometric model can assume more shapes and therefore can be more accurately adapted to an object comprised in the image data.
Abstract:
The present invention relates to an apparatus for determining an injection point for targeted drug delivery into a patient's body by injection of the drug into a vessel feeding a target area including a target. To provide the interventionalist with an objective and quantitative assessment of potential drug injection points instead of letting him rely on his subjective impression from the visual inspection of DSA sequences, an apparatus is proposed comprising: identification means (41) for identification of a vessel tree topology of vessels feeding said target area, flow determination means (42) for determining the percentage of drug material delivered to said target after injection into different potential injection points in said vessel tree, selection means (43) for selecting as optimal injection point the potential injection point resulting in the highest percentage of drug delivery to said target.
Abstract:
High frequency signals cannot be reconstructed properly from sampled data if the sampling frequency lies below the Nyquist rate. The invention addresses this problem by choosing few additional sample points along a trajectory intersecting the region comprising the high frequency signals, such as an edge. Intermediate rendering data is used to determine the additional sample points. Therefore, according to an exemplary embodiment of the present invention, 4 adaptively chosen sample points per pixel may provide a visual quality comparable to 16 times super-sampling, but at a much lower computational cost.
Abstract:
The invention relates to a method in which the information contents of an image of a moving object is enhanced. The invention also relates to a system in which such a method can be carried out and to a computer program enabling a data processing unit to carry out such a method. The method is used notably in the field of medical imaging systems. According to the method first a first image of a moving object is acquired by means of a first imaging method, said image containing artifacts which are caused by the object motion. From two further images, acquired by means of a second imaging method and representing the object in a respective state of motion of the motion, there is formed a motion model which is implemented in a different manner in image processing or image forming steps, so that the information contents of either the first image or a combination image, formed from the first image and the two further images, is enhanced.
Abstract:
A system and method for automatic segmentation, performed by selecting a deformable model of an anatomical structure of interest imaged in a volumetric image, the deformable model formed of a plurality of polygons including vertices and edges, displaying the deformable model on a display, detecting a feature point of the anatomical structure of interest corresponding to each of the plurality of polygons and adapting the deformable model by moving each of the vertices toward the corresponding feature points until the deformable model morphs to a boundary of the anatomical structure of interest, forming a segmentation of the anatomical structure of interest.
Abstract:
A system (900), method (100, 200) and apparatus (600, 700, 800) are provided for analyzing a blood flow in a vascular system from a dynamic diagnostic observation sequence (101) to determine blood flow parameters (112) for further determination of filters, replay speed and finally visualization of the replayed original and filtered sequences. A first embodiment (100) extracts features of the observation and uses these features to select an appropriate model from a database of pre-determined models of vascular system of interest which have associated parameters. These parameters are varied to create an instance of the model that best matches the original observation. A second embodiment (200) visualizes a replay of the original observation (101) and the observation (101') predicted by the model to highlight differences therebetween. A third embodiment (800) provides filtering and control of the replay speed.
Abstract:
A method allowing display of time-varying merged high resolution and low resolution image data with a smooth frame rate. In one embodiment the high resolution data is structural image data and the low resolution image data is functional image data. The functional image data is gathered (20) into groups and each group is rendered and merged (24) together. The merged images produced are then stored (28) in a First In First Out (FIFO) buffer for display. While the merged images are displayed the next set of functional image data is merged and rendered and supplied to the FIFO buffer, allowing a smooth frame rate to be achieved. A computer program and a medical imaging apparatus using the method are also disclosed.
Abstract:
The invention relates to an adaptation system (200) for adapting a deformable model comprising a plurality of model elements to an object of interest in an image data set, said adaptation system (200)comprising a selector (220) for selecting at least one image- driven model element from the plurality of model elements and an adapter (230) for adapting the deformable model on the basis of optimizing a model energy of the deformable model, said model energy comprising an internal energy of the plurality of model elements and an external energy of the at least one image-driven model element, thereby adapting the deformable model. By enabling the adaptation system (200) to selectively choose the image- driven model elements, the adaptation system of the current invention allows excluding a poorly adaptable model element from interacting with the image data set and thus from being pulled and/or pushed by the image data set into a wrong location.
Abstract:
The present invention relates to a way of storing 3D images. The 3D image is composed of a stack of two-dimensional video data subsets represented by arrays of pixel data. Each array of pixel data is partitioned into a plurality of overlapping and adjacent vertical stripes of pixel data having a width at most equal to a cacheline of the memory. The upper most left stripe is stored first and each stripe is stored after the left adjacent stripe. When storing each stripe having multiple rows of pixel data, the upper row is stored first and the first pixel data of each subsequent row of the stripe is stored in a memory location coming after a memory location where the last pixel data of the preceding row in the stripe is stored.
Abstract:
The present invention relates to a way of storing 3D images. The 3D image is composed of a stack of two-dimensional video data subsets represented by arrays of pixel data. Each array of pixel data is partitioned into a plurality of overlapping and adjacent vertical stripes of pixel data having a width at most equal to a cacheline of the memory. The upper most left stripe is stored first and each stripe is stored after the left adjacent stripe. When storing each stripe having multiple rows of pixel data, the upper row is stored first and the first pixel data of each subsequent row of the stripe is stored in a memory location coming after a memory location where the last pixel data of the preceding row in the stripe is stored.