Abstract:
An optical detection device for physiological characteristic identification includes a substrate, a light source and an optical receiver. The light source includes a plurality of first lighting units and a plurality of second lighting units symmetrically arranged on the substrate. The optical receiver is disposed on the substrate and adapted to analyze optical signals emitted by the light source for acquiring a result of the physiological characteristic identification.
Abstract:
A wearable device includes a case and a far infrared temperature sensing device. The case has a first opening. The far infrared temperature sensing device is disposed inside the case of the wearable device. The far infrared temperature sensing device includes an assembly structure, a sensor chip, a filter structure, and a metal shielding structure. The assembly structure has an accommodating space and a top opening. The sensor chip is disposed in the accommodating space of the assembly structure. The filter structure is disposed above the sensor chip. The metal shielding structure is disposed above the sensor chip, and has a second opening to expose the filter structure. The first and second openings are communicated to cooperatively define a through hole.
Abstract:
An optical measurement device with pressure feedback function includes an optical detecting module and a stretchable connective belt. The optical detecting module is adapted to output at least one optical detecting signal to detect pressure applied on an object. The stretchable connective belt is assembled with the optical detecting module and utilized to tie the optical detecting module on the object, and the stretchable connective belt is deformed to vary the pressure generated by the optical detecting module.
Abstract:
An optical detecting module with waterproofing function can be installed on a housing of a wearable device and includes an optical detecting component, a light source and a packaging structure. The light source is disposed by the optical detecting component, and the packaging structure provides the waterproofing function to the optical detecting component and the light source. The packaging structure includes a main body, a light emitting unit, alight incoming unit and a waterproofing component. The main body covers the optical detecting component and the light source. The light emitting unit and the light incoming unit are disposed on the main body and respectively face the light source and the optical detecting component. The waterproofing component is filled into a gap formed between the main body and the housing, to prevent moisture from leaking into the gap to rust terminals of the optical detecting component and the light source.
Abstract:
The present invention provides an optical touch system configured to determine an object region according to a brightness information acquired by a brightness sensing unit and to identify a block information of objects within the object region according to an image information acquired by an image sensing unit. The present invention further provides an objection detection method for an optical touch system.
Abstract:
An apparatus and a method for acquiring object image of a pointer are provided. The apparatus is suitable for an optical touch system and is used for acquiring an object image of a pointer when the pointer interacts with a touch surface of the optical touch system. The apparatus includes an image sensor and a processing circuit. The image sensor is used for acquiring an image of the touch surface. When the pointer approaches the touch surface, the processing circuit compares at least a part of the information of a sensed image with a threshold value, so as to determine a comparison range. Then, the processing circuit determines another threshold value according to the image information in the comparison range. Afterwards, the processing circuit compares the image information in the comparison range with the aforementioned another threshold value, so as to acquire an object image of the pointer.