Abstract:
Techniques are described for load balancing subscriber sessions across tunnel termination devices. A network device is described, for example, that includes a tunneling module that load balances subscriber sessions across a plurality of tunnel termination devices based on weightings associated with the tunnel termination devices. The weightings may be assigned to the tunnel termination devices by a user, or may be calculated by the network device based on resource constraints associated with the tunnel termination devices. The network device may calculate the weightings, for example, based on a maximum number of subscriber sessions supported by each of the tunnel termination devices. As one example, the techniques may be applied to load balance Point-to-Point (PPP) subscriber sessions across L2TP Network Servers (LNSs).
Abstract:
Example methods and apparatus to perform stress testing of geological formations are disclosed. A disclosed example downhole stress test tool for pressure testing a geological formation comprises first and second packers selectively inflatable to form an annular region around the tool, a container configured to store a fracturing fluid, wherein the fracturing fluid is different than a formation fluid and a drilling fluid, a pump configured to pump the fracturing fluid into the first and second packers to inflate the first and second packers and to pump the fracturing fluid into the annular region to induce a fracture of the geological formation, and a sensor configured to detect a pressure of the fracturing fluid pumped into the annular region corresponding to the fracture of the geological formation.
Abstract:
An arrangement (900), method and unit for AFC in a communication system (100) having: a frequency estimator (980) producing a decision-directed frequency estimate from a received signal; and an AFC loop receiving the decision-directed frequency estimate and performing therewith frequency control. The AFC process may use a CRC-decision directed frequency estimate as the final stage in a multi-stage AFC process (preceded by SCH- and midamble-derived frequency estimate stages), such that a verified received data sequence is used to re-construct a local copy of the ideal received data symbols expected at the output of a detector. This local copy is then correlated with the actual detector output and the results used to estimate the frequency error present on the received signal. The AFC process is inherent suited for discontinuous receive (DRX) applications. This provides the advantage of allowing required frequency correction accuracy to have minimal impact on the error rate of the received data in various channel configurations.
Abstract:
Active control feedback between a base station and user equipment in a wireless communications network is achieved by allocating a first time slot within a frame for a UE to transmit a beacon signal to the base station, where the beacon signal is separate from data signals in the frame, allocating a second time slot within the frame for the base station to transmit a control signal in response to the beacon signal, and allocating other timeslots for the base station to operate in full duplex FDD mode. The control signal provides a basis upon which the UE adjusts a transmission parameter, such as power.
Abstract:
A method, communication system and communication unit for synchronisation for multi-rate communication by transmitting a signal (FIG. 4A) having a synchronisation portion at a first, predetermined chip rate and containing an indication of chip rate used for a further portion; receiving the transmitted signal, recovering the indication from the synchronisation portion at the first, predetermined chip rate, and recovering information in the further portion at the chip rate indicated by the indication. This provides improved efficiency in supporting multi-chip rates.
Abstract:
In some embodiments, a camera support mechanism may be used as a mount to couple a camera to a display. The camera support mechanism may include a front lip and rear leg to hold the camera in place. The front lip may align with a front edge of a display. In some embodiments, the rear leg may be adjustable by an adjustment knob. The rear leg may further have a compliant tip to allow the camera support mechanism to adapt to different sizes and shapes of displays. The camera may be mounted on the camera support mechanism through a fastener.
Abstract:
A method, communication system and communication unit for synchronisation for multi-rate communication by transmitting a signal (FIG. 4A) having a synchronisation portion at a first, predetermined chip rate and containing an indication of chip rate used for a further portion; receiving the transmitted signal, recovering the indication from the synchronisation portion at the first, predetermined chip rate, and recovering information in the further portion at the chip rate indicated by the indication. This provides improved efficiency in supporting multi-chip rates.
Abstract:
This heat recovery device replaces the floor drain in a common residential shower. A large circular pan joins flush with the shower stall floor and funnels greywater into the drain piping. The circular pan contains the heat transfer device which preheats the incoming cold water and recovers approximately half of the heat that would otherwise be lost. The incoming cold water travels through a water turbine where it rotates an impeller. The impeller is magnetically coupled with a rotary whisk. The rotary motion continuously washes the draining greywater over a spiral warming coil. The spiral coil transfers the heat to the incoming fresh water as it travels to the shower's mixing valve.
Abstract:
A wireless communication unit for recovering transmit data comprises a receiver for receiving a signal comprising a data payload and at least two pilots, wherein at least a first pilot type of the at least two pilots is different to a second pilot type of the at least two pilots. The wireless communication unit further comprises a processor arranged to: extract at least one pilot of the first pilot type from the received signal; and recover the data payload from the received signal using the extracted at least one pilot of the first pilot type.
Abstract:
An arrangement (100) and method for RF filtering in a Node B of a UMTS TDD system by providing: a DAC converter (130) converting digital signals to analog signals; providing a narrow band analogue channel filter (150) filtering the analog signals; and providing a digital pre-equalizer FIR filter (120) coupled before the DAC (120) to filter the digital signals, the digital pre-equalizer filter means substantially correcting for non linear phase response (122) non-ideality and amplitude response non-ideality (124) in the analogue channel filter (150). This provides the following advantage(s): it enables 3GPP Node B co-location specifications to be met while providing both good transmit accuracy and acceptable ISI performance; and it allows filter center frequency to be field tuned in software, permitting a basic RF single-channel filter to used with its center frequency being field adjustable to a desired value centered on a UMTS channel.