Abstract:
Disclosed is a method for establishing a wireless link key between a remote device (102) and a group device (GDn). In the method, the remote device obtains (210) a group identifier from the group device, and determines (220) whether the group device is associated with a group having a trust association with the remote device. When the group device is determined to be associated with a group having an established trust association with the remote device, the remote device forwards (230) a link setup request to the group device for virtually pairing with the group device using the trust association to establish the wireless link key. When the group device is determined not to be associated with a group having an established trust association with the remote device, the remote device forwards (240) a pairing request to the group device for pairing with the group device to establish the wireless link key.
Abstract:
An apparatus and method for wireless communications supports a periodic scan for wireless devices. The periodic scan includes a plurality of scans spaced apart in time. The phase of the periodic scan is changed in response to one of the wireless devices being detected in one of the scans.
Abstract:
Apparatuses and methods are disclosed for delivering queued downlink (DL) data from a second wireless device to a plurality of first wireless devices. In accordance with example embodiments, the second wireless device may determine, for each of the plurality of first wireless devices, a presence of a corresponding set of queued DL data, may transmit a beacon frame identifying which of the plurality of first wireless devices has queued DL data, and may transmit, to each of the identified first wireless devices, permission to request delivery of queued DL data. Next, the second wireless device may receive, from each of the identified first wireless devices, a request for delivery of the queued DL data. Then, the second wireless device may concurrently transmit, to each of the identified first wireless devices, the corresponding set of queued DL data.
Abstract:
Apparatuses and methods are disclosed for receiving queued downlink (DL) data. In accordance with example embodiments, a first wireless device may receive, from a second wireless device, a beacon frame indicating a presence of queued DL data for concurrent delivery to a plurality of wireless devices. The first wireless device may receive permission to request delivery of the queued DL data. The first wireless device may transmit, to the second wireless device, a request for delivery of the queued DL data based on the permission. The first wireless device may then receive the queued DL data from the second wireless device.
Abstract:
An access point (101) may transmit, to a first wireless device (110), a message (131) indicating a busy period of the access point. The busy period is a time during which the access point will perform wireless operations with at least a second wireless device (120) different from the first wireless device. During the busy period, the access point may refrain from transmitting from the access point to the first wireless device (110). The message (131) indicating the busy period may include a duration of the busy period. The message indicating the busy period may be included in a portion of a data transmission to the first wireless device. The first wireless device may enter a low power mode (e.g., sleep operating state) responsive to the busy period.
Abstract:
In adaptive modulation and coding scheme (MCS) selection for directional antenna systems, at least one table is defined that maps different ranges of signal quality values to different sets of MCS parameters. In some implementations, each range corresponds to a separate table (e.g., a given table will include the MCS and other information for that range of signal quality values). In the event an abrupt change in signal quality is detected (e.g., a change in received signal strength greater than or equal to a defined threshold), instead of using a conventional rate selection algorithm, a new MCS is selected through the use of the ranges from the table(s). In this way, a relatively large change in MCS may be accommodated, if warranted by the change in signal quality.
Abstract:
Systems and methods for controlling a delay associated with paging a remote device. In one implementation, a paging device arranges page operations such that if one of two consecutive page scans performed by a remote device occurs during a response scan, the other page scan occurs during the transmission of a page. In another implementation, a device scanning for a page arranges page scans such that if one of two consecutive page scans occurs during a page response scan, the other page scan occurs during the transmission of a page. In another implementation, a device scanning for a page performs a series of sets of separate page scans, wherein the time interval between two of separate scans in a set is less than the time interval between adjacent sets. The page scans in a set are configured to ensure that one of them occurs during the transmission of a page.
Abstract:
In an addressing scheme for wireless communication a communication channel may be defined based on a unique identifier associated with a destination node or a source node. In addition, a short identifier may be included in messages sent over the communication channel such that a node may uniquely identify the source node or destination node for the message. A node may use a short identifier as an index into a lookup table to determine one or more parameters to be used for communicating with another node.
Abstract:
Low power wireless communication techniques may be employed in devices that communicate via a wireless body area network, a wireless personal area network, or some other type of wireless communication link. In some implementations the devices may communicate via one or more impulse-based ultra-wideband channels. Inter-pulse duty cycling may be employed to reduce the power consumption of a device. Power may be provided for the transmissions and receptions of pulses by charging and discharging a capacitive element according to the inter-pulse duty cycling. Sub-packet data may be transmitted and received via a common frequency band. A cell phone may multicast to two or more peripherals via wireless communication links.
Abstract:
A channel access scheme is provided for a pulse-based ultra-wide band network. Here, concurrent ultra-wide band channels may be established through the use of a pulse division multiple access scheme. An access scheme may employ different states each of which may be associated with different channel parameter state information and/or different duty cycles. For example, a channel access scheme may employ an inactive state, an idle state, a connected state, and a streaming state. Multiple logical channels may be defined for a given ultra-wide band channel via, for example, pulse division multiplexing.