Abstract:
A method for improving frequency diversity in an OFDM system using interleaved interlaces for constellation symbol interleaving comprises interleaving a number of subcarriers of an interlace in a bit reversal fashion and interleaving a number of interlaces in the bit reversal fashion.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
Técnicas para continuar sin cortes la recepción entre programas de multimedia. En el caso de la "decodificación continua", un dispositivo inalámbrico continúa recibiendo, decodificando, descomprimiendo y (opcionalmente), visualizando un programa vigente, aún después que se ha seleccionado un nuevo programa, hasta que la información de encabezamiento necesaria para decodificar el nuevo programa haya sido recibida. Después de recibir la información de encabezamiento, el dispositivo inalámbrico decodifica el nuevo programa pero continúa descomprimiendo el programa vigente. El dispositivo inalámbrico descomprime el nuevo programa después de decodificar este programa. En el caso de la "decodificación temprana", el dispositivo inalámbrico recibe una entrada del usuario e identifica un programa que es potencialmente seleccionable por el usuario. El programa identificado puede ser el programa que ha sido resaltado por la entrada del usuario o un programa del cual se anticipa que será seleccionado, en base a la entrada del usuario. El dispositivo inalámbrico inicia la decodificación del programa identificado, con anterioridad a su selección, de manera tal que el programa pueda ser descomprimido y visualizado antes si es subsiguientemente seleccionado.
Abstract:
Video portion and audio portion are designated to be played together but are transmitted by the base station at different times: video portion is transmitted early with respect to audio portion by a delay difference.
Abstract:
Techniques for multiplexing multiple data streams using frequency division multiplexing (FDM) in an OFDM system are described. M disjoint "interlaces" are formed with U usable subbands. Each interlace is a different set of S subbands, where . The subbands for each interlace are interlaced with the subbands for each of the other interlaces. M slots may be defined for each symbol period and assigned slot indices 1 through M. The slot indices may be mapped to interlaces such that (1) frequency diversity is achieved for each slot index and (2) the interlaces used for pilot transmission have varying distances to the interlaces used for each slot index, which improves channel estimation performance. Each data stream may be processed as data packets of a fixed size, and different numbers of slots may be used for each data packet depending on the coding and modulation scheme used for the data packet.
Abstract:
Techniques to seamlessly switch reception between multimedia programs are described. For "continued decoding", a wireless device continues to receive, decode, decompress, and (optionally) display a current program, even after a new program has been selected, until overhead information needed to decode the new program is received. After receiving the overhead information, the wireless device decodes the new program but continues to decompress the current program. The wireless device decompresses the new program after decoding this program. For "early decoding", the wireless device receives a user input and identifies a program with potential for user selection. The identified program may be the one highlighted by the user input or a program anticipated to be selected based on the user input. The wireless device initiates decoding of the identified program, prior to its selection, so that the program can be decompressed and displayed earlier if it is subsequently selected.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.