Abstract:
The present disclosure relates to transmitting and receiving a beam report at a UE and a base station. The base station can configure a cDRX cycle with the UE. Also, the UE can wake up during an off period of the cDRX cycle. The UE can also compare a first metric of at least one of a plurality of candidate beams and a second metric of a current beam for communication with the base station. Additionally, the UE can transmit a beam report to the base station, during the off period, based on the comparison of the first metric of the at least one of the plurality of candidate beams and the second metric of the current beam. The UE can also select, during the off period of the cDRX cycle, the at least one of the plurality of candidate beams for communication with the base station.
Abstract:
A UE may be configured to select narrower or wider beams that may be suitable for use with a current UE mobility, scattering environment, etc. The UE may track changes to an identified beam of a certain width, and so may recover from tracking or other radio link failures by switching to a beam that is spatially adjacent or to a beam of a different width. The UE may identify a first beam associated with a first beam width based on at least one reference signal received by the UE. The UE may further determine a set of beams based on the first beam width that is associated with the identified first beam, and the determined set of beams may include at least one beam corresponding to the first beam width. The UE may further measure respective channel qualities associated with each beam of the determined set of beams.
Abstract:
Methods, systems, and devices for wireless communications are described to enable a user equipment (UE) to employ a discretionary on mode ( e.g ., powering receiver circuitry) in order to conserve power during discontinuous reception. The UE may discretionarily cut down an on time duration by delaying wake-up ( e.g ., powering on receiver circuitry) or by sleeping ( e.g ., powering down receiver circuitry) during portions of an on duration. The UE may also discretionarily skip one or more on durations. The UE may use hybrid automatic repeat request retransmissions to receive information that may be missed when sleeping during a configured on duration. The UE may evaluate one or more conditions in order to determine whether to employ a discretionary on mode. For example, the UE may determine to conserve power based on one or more of a data traffic type, a battery level, a channel condition, a retransmission policy, or physical layer activities.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may use a measurement procedure for beam detection within an existing cell. The UE perform a search procedure for a first synchronization signal block (SSB) to detect a first beam of a base station. The UE may determine a first timing offset for the first SSB based on the search procedure. The UE may estimate a second timing offset for a second SSB from the base station based on the first timing offset. The UE may perform a measurement procedure for the second SSB to detect a second beam of the base station based on the second timing offset. The UE may prune fake beams based on synchronization signals used for the measurement procedure.
Abstract:
Various aspects of the disclosure relate to reporting power headroom of an apparatus such as a user equipment (UE). For an apparatus that uses beamforming, the power headroom associated with the beam the apparatus is using for wireless communication (e.g., with a base station) may be lower than the power headroom associated with another beam that the apparatus could use for the wireless communication. The disclosure relates in some aspects to using one beam for wireless communication and using the power headroom for another beam for a power headroom report. In this way, the apparatus may always report its full transmit power capability.
Abstract:
Aspects of the disclosure relate to a method of operating a scheduled entity for wireless communication with a network. In some aspects, the scheduled entity transmits a message that requests a scheduling entity to transmit at least one reference signal. The scheduled entity obtains channel state information based on the at least one reference signal. The scheduled entity transmits a report that includes the channel state information. In other aspects, the scheduled entity transmits a message that requests a scheduling entity to schedule a reference signal transmission for the scheduled entity. The scheduled entity obtains an assignment of resources for transmission of the reference signal in response to the message. The scheduled entity transmits the reference signal based on the assignment of resources. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the present disclosure relate to receiver beamforming for serving and neighbor cell measurements. An exemplary method generally includes communicating with one or more base stations using a first beam type, initiating a transition to communicating with at least one of the one or more base stations using a second beam type in response to an indication of a trigger event, and communicating with the at least one of the one or more base stations using the second beam type.
Abstract:
Methods and apparatus for determining a reference sequence and timing based on normalized correlations are described. One example method generally includes receiving, at a first antenna of an apparatus, a first signal comprising a reference sequence; receiving, at a second antenna of the apparatus, a second signal comprising the same reference sequence; sampling the first and second signals to form first and second signal sequences; correlating the first and second signal sequences with each of one or more candidate sequences for the reference sequence using normalization; and determining the reference sequence and timing for the first and second signals based on the normalized correlations.
Abstract:
Certain aspects of the present disclosure propose techniques for independently signaling features supported by a user equipment (UE) in different duplexing modes. The UE may be capable of communicating in frequency division duplexing (FDD) and time division duplexing (TDD) modes. The UE may obtain a FDD-specific feature group indicators (FGIs) set and a TDD-specific FGIs set, and signal at least one of the FDD-specific FGIs set or TDD-specific FGIs set. In addition, the UE may take one or more actions to reduce the likelihood of transitioning to a mode of operation that is different from its current mode of operation.
Abstract:
Techniques and apparatus for determining a transmit power limit based on sensor spatial coverage. A method that may be performed by a wireless communication device includes selecting a beam for transmission of a signal, determining a transmit power limit based at least in part on an overlap between the selected beam and a coverage zone of a sensor, and transmitting the signal via the beam at a transmit power based at least in part on the determined transmit power limit.