Abstract:
Techniques are disclosed for estimating a frequency of a crystal oscillator based on temperature. In an embodiment, the oscillator frequency is computed using a polynomial approximation. Techniques are disclosed for deriving and periodically updating the coefficients used in the polynomial approximation.
Abstract:
A wireless device includes: a first radio and first transceiver configured to transmit and receive according to a first radio access technology; a second radio and second transceiver configured to transmit and receive according to a second radio access technology; a first antenna and a second antenna connected to the first radio and the second radio; a switch; and a control unit configured to control the switch to configure connections of the first and second antennas to the first and second radios. The control unit is configured to control the switch to disconnect the second radio from the second antenna in response to a receiving, by the second radio through the second antenna, a signal that is below a predetermined threshold, and to connect the second radio to the first antenna during a wakeup period of the second radio.
Abstract:
Systems and methods for antenna selection in a wireless terminal with two radios are provided. Signals received using first and second antennas are demodulated by first and second modems according to first and second protocols. A receive path between the second antenna and the second modem can be controlled to receive signals according to the first protocol. A performance measure of demodulating, according to the first protocol, a signal received using the second antenna is determined. The performance measure may be determined using a mirror module in the second modem or using a search module in the first modem. The wireless terminal switches antennas so that the first modem demodulates a signal received using the second antenna, if the performance measure for using the second antenna is such that the switch would improve performance of the first modem.
Abstract:
Method and apparatus for generating a temperature compensated frequency estimate for a crystal oscillator, wherein the temperatures of the crystal and oscillator are both accounted for. A crystal temperature measurement is used to generate a first frequency component. The difference between the oscillator temperature measurement and a second temperature is scaled, and used to generate a second frequency component. The first and second frequency components may be summed to produce a frequency estimate for the crystal oscillator. In an embodiment, the computations may be performed in the slope domain.
Abstract:
TDD devices may transmit using multiple antennas. First and second antennas having first and second receive conditions may receive a communication. In an aspect, first and second transmit conditions for the first and second antennas may be determined based on the first and second receive conditions. In an aspect, the first and second transmit conditions may be compared to select the first or second antenna for transmissions. In an aspect, the first and second receive conditions may be compared to select the first or second antenna for transmissions. In an aspect, first and second transmission conditioning values, which may determine transmission powers, may be determined based on the first and second receive conditions. A first transmission chain, associated with an active RAT or carrier, and a second transmission chain, associated with an inactive RAT or carrier, may be activated to send transmissions from the first and second antennas.
Abstract:
Aspects disclosed herein relate to predicting one or more signal characteristics to improve efficiency for a PA. A wireless communications device may be include a power amplifier and a processor that is associated with a signal prediction module. In an aspect, the processor may be a modem, a RF chip, etc. In one example, the wireless communications device may be configured to buffer one or more values associated with an input signal. The signal prediction module may be configured to predict a system response to at least a portion of the one or more buffered values, and generate a switcher control signal based on the system response. The signal prediction module may also generate a predicted supply voltage from the values associated with the input signal.
Abstract:
Systems and methods for temperature-calibration of an uncompensated XO in a mobile device during mobile device operation. The XO is temperature-calibrated based on assistance from wireless signals, such as from satellite source, and optionally from terrestrial sources such as WWAN, CDMA, etc. Based on one or more received wireless signals received at a receiver, corresponding frequency estimates of the XO are obtained and correlated with corresponding operating temperatures in a processor. Based on one or more samples of frequency estimates and associated temperatures, the XO is temperature-calibrated in the processor wherein a frequency-temperature (FT) model is formulated for the XO. The frequency of the temperature-calibrated XO can be determined from the FT model at any given temperature.
Abstract:
This disclosure provides systems, methods, and apparatus for an initial network acquisition process via multiple antennas. In one aspect a method of establishing communications via a wireless network at a wireless communications apparatus is provided. The method includes attempting an initial acquisition process, over one or more frequencies, for establishing communications over the wireless network via a transmit circuit and a receive circuit transmitting and receiving via a first antenna. The method further includes switching the transmit circuit and the receive circuit from transmitting and receiving via the first antenna to a second antenna in response to detecting failure of the initial acquisition process. The switching is independent of a performance metric of the first or the second antenna. The method further includes re-attempting the initial acquisition process based on the switching to the second antenna over the one or more frequencies.
Abstract:
In a communication system, user equipment (UE) conditionally performs uplink transmit diversity (ULTD) either by Switched Antenna Transmit Diversity (SATD) or Beamforming Transmit Diversity (BFTD) using a first antenna and a second antenna. Either a serving node or the UE determines that uplink transmit diversity is conditionally authorized. Either a serving node or the UE measures a value. The UE transmits using ULTD in response to determining that an enabling condition based on the value is satisfied. The UE can also disable uplink transmit diversity in response to determining that a disabling condition based on the value is satisfied. The disabling condition comprises a disabling threshold that equals the enabling condition comprising an enabling threshold with a threshold adjustment for hysteresis.