Abstract:
Methods and apparatus are provided for device configuration (e.g., feature segment loading and system selection). Certain aspects of the present disclosure generally relate to operating a user equipment (UE) in a first radio access network (RAN) with a first set of modem features that supports the first RAN, detecting a second RAN not supported by the first set of modem features, and rebooting the modem software to load a second set of modem features that supports the detected RAN. For certain aspects, the first RAN may be a Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) network and the second RAN may be a Wideband-Code Division Multiple Access (W-CDMA) network or Long-Term Evolution (LTE) network. This allows features to be loaded into memory (e.g., only) when they are required to support a detected RAN, rather than loading an entire image, thereby conserving DRAM and increasing efficiency.
Abstract:
Systems and methodologies are described that facilitate network management and optimization. As described herein, a network and a device communicating with the network can exchange network management information, thereby supporting a Self Organized Network (SON) architecture for improved network management and optimization performance. A Non-Access Stratum (NAS) layer protocol and/or an Internet Protocol (IP) application, in combination with a set of associated network management messages, can be utilized to exchange network management information between a device and a network. As further described herein, various procedures can be utilized to install a SON policy to a device in order to define device behavior for operations such as collecting and reporting information related to network management. Additionally, a set of standardized events can be defined, based on which a device can detect the occurrence of an event and report the occurrence to an associated network.
Abstract:
Aspects relate to allowing a mobile device to discover missing neighbor cell relations when there is a radio link failure. At substantially the same time as connecting to a new cell that utilizes the same radio link technology, the failure is reported. If a connection is reestablished with a cell that utilizes a different radio link technology, the radio link failure information (and related missing neighbor information) is retained and reported later when a connection with a cell that utilizes the same radio link technology is established.
Abstract:
Facilitating user terminal (UT) access to wireless networks having disparate types of base stations (BSs) is described herein. By way of example, a distinct identifier (ID) can be reserved for a particular type of network access point (e.g., restricted or general access, full or fractional re-use, transmit power, cell size, etc.). The distinct ID can be broadcast by such access points, identifying the access point type. In some aspects, the distinct ID can be unicast to a terminal that is within a predetermined region of the network. Thus, at least within such region, the terminal can be directed to search for or handoff to a preferred type of access point (such as a home Node B). In such aspects, by providing regional-specific access, the subject disclosure can significantly reduce overhead signaling outside a home region where a home or preferred access point is expected to be found.
Abstract:
Facilitating user terminal (UT) access to wireless networks having base stations (BSs) of disparate access types is described herein. In some aspects, BS parameterization is provided to facilitate search and/or access to distinct types of network BSs. For instance, parameters can modify a likelihood of identifying or remaining coupled to restricted access (RA) BSs in a home Node B (HNB) deployment. In other aspects of the subject disclosure, a PLMN ID reserved for HNBs is provided comprising multiple region IDs. Where a UT identifies a home region, HNBs can be given preference over macro BSs. Additionally, the UT can keep track of HNBs and HNB regions that reject access to the UT, and implement a delay time to mitigate rapid signaling to foreign HNBs in a dense HNB deployment. Accordingly, the subject disclosure provides for more efficient UT access in heterogeneous access type networks.
Abstract:
Systems and methodologies are described that facilitate employing a paging indicator channel in connection with high speed channels in a wireless communications network. A paging indicator transmission can be sent on the paging channel to one or more mobile devices. The paging indicator indicates that additional information such as a full paging messages, other control plane data or other user plane data is expected to be transmitted at a specific time instant (e.g., subframe) on the associated high speed channel. A set of parameters can be transmitted on common channels that specify a set of associated subframes in a high speed channel. Mobile devices can analyze the set of parameters to determine the associated subframes and receive the subframes in accordance with a schedule.
Abstract:
Techniques for performing handover in order to maintain call continuity for a user equipment (UE) are described. The UE may communicate with a first cell in a radio access network (RAN) for a packet-switched (PS) call, e.g., for Voice-over-Internet Protocol (VoIP) via High-Speed Packet Access (HSPA) in W-CDMA. The UE may send measurement reports to the RAN and may receive trigger from the RAN. The UE may establish a circuit-switched (PS) call with the first cell while the PS call is pending at the first cell. The PS call and the CS call may be for a voice call, and the UE may switch data path for the voice call from the PS call to the CS call and then terminate the PS call. The UE may then perform handover of the CS call from the first cell to a second cell, which may not support VoIP.
Abstract:
Techniques for performing inter-system handover are described. An Access Gateway (AGW) sends a message requesting handover of a user equipment (UE) from a first radio access network (RAN) to a second RAN. The message is sent to an Inter Access System (inter-AS) Anchor for the first RAN communicating with an SGSN for the second RAN via a Gn interface. The Inter-AS Anchor and SGSN exchange messages via the Gn interface, and the Inter-AS Anchor forwards the messages to the AGW to handover the UE from the first RAN to the second RAN. The SGSN sees the Inter-AS Anchor as another SGSN for the handover and as a GGSN after the handover. This allows the inter-system handover to be achieved with an inter-SGSN SRNS relocation procedure used for handover between two SGSNs, which reduces impact on the SGSN to support the inter-system handover.
Abstract:
A system and method for providing high performance dispatch services for a push-to-talk (PTT) communication over a wireless communication network. When a wireless device is powered up, it registers with a server and then transitions to a paging state instead of an idle state. When the wireless device is ready to transmit PTT communications, it sends a message to the server and transitions to a transmission state when a confirmation is received from the server. Once in the transmission state, the wireless device is ready to transmit the PTT communications to the server.
Abstract:
A scheme is provided for indexing and storing radio bearer configurations for a UMTS wireless communication network, such as a UTRAN. A radio network controller maintains a list of radio bearer configurations and an identifier for each configuration. One or more of these configurations and their identifiers are sent to a mobile terminal in the network. The mobile terminal stores these configurations and identifiers for future reference. This enables an on-the-fly configuration scheme in which the network controller can reference a particular stored configuration by its identifier to cause the mobile terminal to use that configuration to setup wireless transmitter and/or receiver. The identifiers may have contiguous values so that the network controller can transmit a range (e.g., starting identifier and ending identifier) to the mobile terminal rather than each identifier. When a configuration is modified or removed, the network controller may reassign identifiers to maintain contiguous values.