Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a user service description (USD) message. When a frequency indicated in the USD message is not a current frequency, the apparatus determines that a system information message is received, determines that the frequency indicated in the USD message is included in the system information message, determines that the frequency is a neighboring cell frequency, sets a priority of the frequency to a highest priority, and measures a signal strength of the frequency when the frequency is included in the system information message, performs a cell reselection determination procedure based on the signal strength of the frequency, performs cell reselection to the neighboring cell based on a result of the cell reselection determination procedure, and acquires the multicast service in the neighboring cell on the frequency.
Abstract:
Embodiments of the present disclosure allow a MS to dynamically adjust the mapping of a physical CINR measurement to an effective CINR. For some embodiments, an effective CINR value may be generated based on a physical CINR value and a measured packet error rate (PER) over one or more time periods. Depending on the comparison result between the measured PER and a target PER, the physical CINR is lowered or increased before mapping to the effective. CINR. The effective CINR reported back to a BS is thus dynamically adjusted for allowing the BS to select a coding scheme that effectively compensates for changes in channel conditions, which may improve system performance.
Abstract:
Minimizing conflicts between different radio access technologies (RATs) is disclosed herein which include monitoring, by a user equipment (UE), a first use of a UE Radio Frequency (RF) resource by a first Radio Access Technology (RAT). The UE monitors a second use of the UE resource by a second RAT. The UE is served by a current serving cell in the second RAT. The UE may also determine a percentage of conflict between a first use of a UE resource by a first RAT and the second use of the UE resource by the second RAT over a predefined period of time, and initiating, by the UE, a cell reselection attempt to one or more neighboring cells of a plurality of neighboring cells serving the second RAT based on the determined percentage of conflict exceeding a predetermined threshold.
Abstract:
A method, an apparatus, and a computer program product for wireless communication enable user equipment operating in a current cell that provides a multimedia broadcast/multicast service to distinguish between neighboring cells that have different operational characteristics. The presence of a neighboring cell is identified while the user equipment is operating in a first cell and it is determined whether the neighboring cell provides services different from the services provided in the current cell, based on information maintained by the user equipment. The user equipment may move to the neighboring cell to obtain better or different service.
Abstract:
A method and apparatus are disclosed to enable user equipment in a TD-SCDMA network to reduce or eliminate RF signal leakage from a transmitter to a receiver. In an aspect of the disclosure, a method includes receiving an assignment of an uplink time slot of a sub-frame and receiving an assignment of a downlink time slot of the sub-frame, wherein the uplink time slot is prevented from being sequential to the downlink time slot. In another aspect of the disclosure, a method includes receiving an assignment of an uplink time slot of a sub-frame associated with a first carrier frequency and receiving an assignment of a downlink time slot of a sub-frame associated with a second carrier frequency, wherein the first carrier frequency is prevented from being the same frequency as the second carrier frequency when the uplink time slot is sequential to the downlink time slot.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided, wherein a first synchronization signal is transmitted to request access to a Node B; an acknowledgement transmitted from the Node B is detected, wherein the acknowledgment comprises an indication that a second synchronization signal was transmitted after the first synchronization signal; and the first synchronization signal is retransmitted based on the acknowledgment.
Abstract:
A base station and a subscriber station may negotiate paging parameters so that the subscriber station can enter idle mode. After the subscriber station has entered idle mode, the base station may change at least one paging parameter at the base station. The base station may direct the subscriber station to change at least one paging parameter at the subscriber station after the subscriber station has entered idle mode. The subscriber station may change at least one paging parameter at the subscriber station after the subscriber station has entered idle mode.
Abstract:
Certain embodiments of the present disclosure present methods and apparatuses that enable a mobile station (MS) to selectively reject downlink (DL) data during idle mode. The MS may determine whether to reject the pending DL data based on information about the data. This information may be provided by a base station (BS) that is part of the access service network (ASN) that is retaining the DL data. The information provided by the BS may, for instance, include service flow information related to the pending DL data. In certain embodiments, the information may include one or more internet protocol (IP) packets that are part of the pending DL data.
Abstract:
The present disclosure proposes a method for incorporating a procedure of adding/changing a service flow of a mobile station into a handover process in order to avoid problem that the mobile station can handover to a neighbor base station that do not support the requested service flow operation. Furthermore, the proposed disclosure can reduce the processing delay by combining the handover process of the mobile station and the procedure of adding/changing the service flow.