Abstract:
A communication system that allows multiple data applications to work simultaneously within a distributed execution environment in which only one IP address is assigned to a mobile system (10) by an external wireless network (13). The mobile system comprises a wireless communication system with a first processing device (31) (such as a cell phone or a network card) and a second device with another processor (32) (such as a laptop computer or a personal digital assistant). The single IP address is assigned to the second processor, and all incoming external communications are stored in the second processor. In some embodiments the first processing device includes a filter (20); in other embodiments the second processing device includes a proxy for each processor (26). Additional processors can be connected to the mobile system by adding an additional filter or additional proxy.
Abstract:
A novel and improved method and apparatus for searching is described. This searcher combines the ability to search multiple offsets of single pilots, such as those found in the IS-95 system, with the ability to search multiple pilots, such as those found in a GPS location determination system. Both types of searching can be done in a single architecture combining the parallel computation features of a matched filter with the flexibility of allowing a variable number of non-coherant accumulations to be performed at high speed for a wide range of search hypotheses in a resource efficient manner. This invention allows for parallel use of the matched filter structure in a time-sliced manner to search multiple windows. In addition, the searcher allows for optional independent Walsh decovering for each search window. The time-sharing approach allows for optional frequency searching of any offset.
Abstract:
An assisted wireless position determination system includes a plurality of base stations and a plurality of wireless devices, such as mobile telephones and personal digital assistants, adapted to communicate with the base stations. The wireless position determination system also includes a position determination system for determining the geographic position of the wireless devices. The position determination system includes a position determination entity (PDE) that is connected to the base stations and serves as a processing server for computing the position of the wireless devices. The system and method reduces or eliminates redundant and superfluous data. In addition, the system and method ensure that the wireless device is not loaded with additional capacity, and that the wireless device is provided with precise location information. The embodiments of the system and method of the invention are compliant with the TIA/EIA IS-801 standard or other standards.
Abstract:
A wireless communication device, known as a mobile station (MS), contains a conventional wireless communication system and further comprises a wireless computer network communication subsystem and may also include GPS capability. The operator of the MS may utilize any or all of these subsystems to determine the current position of the MS. Based on the current position of the MS, location-based services are provided to the MS as sales information, schedules, prices, maps, and the like. In a typical implementation a plurality of computer network access points, or beacons, are distributed throughout a geographic region and used to determine the position of the MS with a reasonably high degree of accuracy. Based on the current position of the MS, the beacons can provide location-based services.
Abstract:
The frequency error of an oscillator is minimized by characterizing the operating environment of the oscillator. An electronic device monitors parameters that are determined to have an effect on the frequency accuracy of the internal frequency source. Temperature is one parameter known to have an effect on the frequency of the internal frequency source and a primary contributor to device temperature is the RF Power Amplifier (PA). The electronic device collects and stores the activity level of the PA. The effective PA duty cycle over a predetermined period of time is calculated. The LO operating environment is stabilized by operating the PA at the calculated duty cycle when the LO is required to operate in a high stability mode.
Abstract:
A method of and system for estimating a parameter of a local maxima or minima of a correlation function derived from a received signal . An interpolated local maxima or minima is determined. An interpolation offset is then derived, comprising a deviation between locations of the interpolated and sampled local maxima or minima of the function. An estimate of the parameter is derived from the interpolation offset.
Abstract:
The frequency error of an oscillator is minimized by characterizing the operating environment of the oscillator. An electronic device monitors parameters that are determined to have an effect on the frequency accuracy of the internal frequency source. Temperature is one parameter known to have an effect on the frequency of the internal frequency source and a primary contributor to device temperature is the RF Power Amplifier (PA). The electronic device collects and stores the activity level of the PA. The effective PA duty cycle over a predetermined period of time is calculated. The LO operating environment is stabilized by operating the PA at the calculated duty cycle when the LO is required to operate in a high stability mode.
Abstract:
A method for calculating a position estimate of a mobile station (MS) includes collecting in the MS position estimate information (PEI) transmitted by a location node. At some point, the MS generates PEI parameters which include information from which the location node can be located or identified. The MS generates the PEI parameters based upon the PEI transmitted by the location node. Once generated, the MS sends the PEI parameters to a position determination entity. The PEI parameters permit calculation of the position estimate of the mobile station.
Abstract:
A forward link repeater frequency watermarking (FLRFWM) system and method that enable accurate position location of mobile stations in areas where repeaters are present by watermarking repeated signals with repeater information. A repeater watermarks a forward link signal with a (unique or non-unique) fast frequency modulation waveform watermark every time a signal passes through the repeater. A mobile station detects and/or identifies the fast frequency watermark on the forward link signal to determine repeater information that aids the network position determination entity or mobile station position location system in determining position location using AFLT and/or A-GPS systems. A forward link fast frequency watermarking system described herein achieves minimal impact on FL, AFLT, and GPS performance, good detection, identification and false alarm probabilities, short time-to-detect/identify, and good detection/identification sensitivity.