Abstract:
An adaptive scheme controls the transmission of interference management messages by wireless nodes. The adaptive scheme is used to determine whether and/or how to transmit resource utilization messages. Such a determination is based on comparison of a quality of service threshold with a current quality of service level associated with received data (206). A quality of service threshold may be adapted based on the effect of previously transmitted resource utilization messages (214). A quality of service threshold for a given wireless node may be adapted based on the frequency at which the wireless node transmits resource utilization messages. A quality of service threshold for a given wireless node may be adapted based on information received from another wireless node. An adaptation scheme also may depend on the type of traffic received by a given wireless node. A quality of service threshold is also adapted based on throughput information (2.14).
Abstract:
Apparatus and method for supporting wireless downlink and uplink connections. In the downlink direction, an apparatus receives from the downlink node a request to communicate using an allocation of radio resources specified by the downlink node, and transmits to the downlink node a grant to communicate using at least a portion of the specified allocation of radio resources. In the uplink direction, the apparatus sends a request to a downlink node to communicate using a specified allocation of radio resources, and receives from the downlink node a grant to communicate using at least a portion of the specified allocation of radio resources
Abstract:
A message exchange scheme for wireless communication employs a request, a grant, and a confirmation. In some implementations wireless media access control supports asynchronous communication and overlapping transmissions. Here, a wireless node may determine whether to request or schedule a transmission based on control messages it receives from neighboring nodes. In some implementations a scheduled transmission may be divided up into several segments so that a transmitting node may receive and transmit control messages between segments. In some implementations a monitoring period is defined after a scheduled transmission period to enable the transmitting node to acquire control information that may otherwise have been transmitted during the scheduled transmission period. In some implementations data and control information are transmitted over different frequency division multiplexed channels to enable concurrent transmission of the data and control information.
Abstract:
A wireless media access control supports asynchronous communication and overlapping transmissions. Here, a wireless node may determine whether to request or schedule a transmission based on control messages it receives from neighboring nodes. In some implementations a scheduled transmission may be divided up into several segments so that a transmitting node may receive and transmit control messages between segments. In some implementations a monitoring period is defined after a scheduled transmission period to enable the transmitting node to acquire control information that may otherwise have been transmitted during the scheduled transmission period. In some implementations data and control information are transmitted over different frequency division multiplexed channels to enable concurrent transmission of the data and control information.
Abstract:
Systems and methods are described that facilitate evaluating conditions of nodes (e.g., access points, access terminals, etc.) in a wireless communication environment to determine a level of disadvantage for a given node relative to other nodes. A first node may receive a resource utilization message (RxRUM) and may determine a level of disadvantage for a node that sent the RxRUM. The first node may then compare its own level of disadvantage to the sending node in order to permit a determination of an appropriate course of action in response to the RxRUM.
Abstract:
A relay supporting multiple relay modes is provided. The relay transmits capability information to a base station, the capability information indicating support for a first relay mode and a second relay mode. The relay determines a mode of operation, either on its own or based on an indication of a mode of operation from the base station, wherein the mode of operation comprises the first relay mode or the second relay mode. The relay communicates with at least one of the base station or another wireless device based at least in part on the determined mode of operation.
Abstract:
Aspects described herein relate to establishing a control connection with at least a first node for receiving control information for providing a repeater function for two or more upstream nodes, communicating control information over the control connection from at least the first node, and providing, based on the control information, the repeater function between at least a first upstream node of the two or more upstream nodes and at least one downstream node and between at least a second upstream node of the two or more upstream nodes and the at least one downstream node or at least another downstream node.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a repeater node may receive a communication, wherein the communication is to be forwarded by the repeater node in accordance with a digital repeating operation. The repeater node may perform a measurement associated with the communication. The repeater node may transmit, to a control node, a feedback communication that is based at least in part on the measurement associated with the communication. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a digital repeater may receive, from a control node, a configuration that indicates a digital processing operation, wherein the digital processing operation comprises a digital processing option selected from a plurality of digital processing options. The digital repeater may receive a first signal. The digital repeater may perform the digital processing operation on the first signal to generate a second signal, wherein the second signal comprises a re-generated version of the first signal. The digital repeater may transmit the second signal. Numerous other aspects are provided.
Abstract:
This disclosure generally relates to systems, devices, apparatuses, products, and methods for wireless communication. For example, a communication system may include a repeater that relays communications between communication devices. The repeater determines one or more power configuration parameters associated with the repeater and transmits the one or more power configuration parameters to a controlling node, such as a base station or other entity. The repeater receives, from the controlling node, gain configuration information determined based on the one or more power configuration parameters. A repeater may receive a communication, determine a gain value based on the gain configuration information, and apply the gain value to the received communication to create a gain adjusted communication for transmission to another device.