Abstract:
The disclosure relates to mechanisms that may be used to route notifications in an Internet of Things (IoT) environment according to user activity and/or proximity detection. More particularly, in various embodiments, an entity that manages the IoT environment may receive one or more messages, actions, or responses that indicate detected activity or detected proximity associated with one or more users from one or more IoT devices in the IoT environment. The management entity may then establish an activity and proximity trail from the one or more messages, actions, or responses that indicate the detected activity or the detected proximity, whereby in response to an IoT device reporting one or more notifications, an IoT device in proximity to at least one of the one or more users may be identified and the one or more notifications may be routed to the identified IoT device.
Abstract:
The disclosure generally relates to offloading communication from a network infrastructure to direct peer-to-peer communication. In particular, a server may receive peer-to-peer status information over the network infrastructure from at least two client devices that intend to communicate, wherein the peer-to-peer status information may include at least coarse or precise location information associated with the client devices. The server may then instruct the client devices to communicate over a direct peer-to-peer connection that bypasses the network infrastructure in response to determining that the location information received from the client devices and other conditions permit offloading the communication from the network infrastructure. For example, the server may determine whether the communication can be offloaded based at least in part on whether an estimated distance between the client devices falls within a maximum range associated with one or more peer-to-peer interfaces supported on one or more of the client devices.
Abstract:
Methods and apparatuses for implementing an emergency instruction based on an emergency message from a trusted authority source. The method includes receiving, at an Internet of Things (IoT) device, an emergency secret key from a trusted authority source The method receives, at an IoT device, an emergency message from the trusted authority source; decoding, at an IoT device, the emergency message from the trusted authority source using the emergency secret key to determine a value within the emergency message. The method calculates, at an IoT device, a result based on the determined value. The method implements, at an IoT device, an emergency instruction if the result is above a predetermined threshold.
Abstract:
The disclosure relates to collaborative intelligence and decision-making in an Internet of Things (IoT) device group. In particular, various IoT devices in the group may be interdependent, whereby a decision that one IoT device plans may impact other IoT devices in the group. Accordingly, in response to an IoT device planning a certain decision (e.g., to transition state or initiate another action), the IoT devices in the group may collaborate using distributed intelligence prior to taking action on the planned decision. For example, a recommendation request may be sent to other IoT devices in the group, which may then analyze relationships within the group to assess potential impacts associated with the planned decision and respond to approve or disapprove the planned decision. Based on the responses received from the other IoT devices, the IoT device may then determine whether to take action on the planned decision.
Abstract:
The disclosure generally relates to Internet of Things (IoT) device social networking, and in particular to an IoT device publish-subscribe messaging model and automatic IoT device social network expansion. For example, IoT devices from different networks may publish status data that relates to certain topics, wherein the published status updates may be managed in a distributed manner at each IoT network. Furthermore, IoT devices interested in published data can subscribe to data relating to certain topics, which may be used to dynamically adjust actions that the subscribing IoT devices may take. Furthermore, IoT devices can employ common social networking capabilities (e.g., refer, follow, like, publish, subscribe, etc.) to interact with other IoT devices and find relevant information from other IoT devices that can be used to improve performance and effectiveness.
Abstract:
Systems, methods, and devices of the various embodiments enable dynamically creating and joining group communication sessions without (i.e., free of) operator-controlled or operator-assisted provisioning. By encoding group call provisioning information in a bar code, such as a Quick Response Code ("QR code"), that participants can scan using their mobile communication devices (e.g., smart phones), a group call may be created and provisioned on communication devices. The QR code encodes the information needed to initiate and/or join a group communication session maintained by a group communication server.
Abstract:
Apparatus and methods establish and maintain a plurality of profiles defining different personalities in association with a single user account. Further, apparatus and methods described herein enable a group communication session including receiving a request from an originator to initiate a group communication session, where the request identifies a plurality of participants. Further, these aspects include selecting an originator profile from a plurality of different established originator profiles to be displayed to each of the plurality of participants, where each of the plurality of different established originator profiles is associated with a single user account. Further, in these aspects, a first selected originator profile to be displayed to a first one of the plurality of participants differs from a second selected originator profile to be displayed to a second one of the plurality of participants.
Abstract:
Methods and mobile devices enable adjusting an advertising rate charged to an advertiser for ad content presented by an advertising device. A presence of a mobile device in proximity to the advertising device may be detected. Information such as mobile device characteristics may be obtained from the mobile device indicative of a state of attentiveness of a user of the mobile device to the advertising device. The advertising rate charged to the advertiser for the ad content presented by the advertising device may be adjusted based on the obtained information indicative of the state of attentiveness of the user of the mobile device.
Abstract:
Systems and methods are disclosed for maintaining continuity of a peer-to-peer group session. The method may include exchanging a first P2P group session communication with a member of the P2P group via a direct data traffic connection, requesting session data from an application server, conveying the session data to a proxy UE, wherein the proxy UE is a member of the P2P group, and exchanging a second P2P group session communication with the application server in accordance with the session data.