Abstract:
The number of handover-related failures that occur in a communication system may be reduced by taking target access point conditions into account when declaring radio link failure and/or by delaying certain handover operations. In some aspects, criteria for radio link failure detection and access terminal-controlled mobility may take into account access point parameters related to neighboring cells that may be available as mobility targets. For example, filtering mechanisms for detecting radio link failure based on radio layer problem reports may also take into account the availability of various neighbor access points and their measured signal strengths. In addition, a handover command may be sent earlier than in conventional systems (e.g., the handover command may be sent even though the target access point is weaker than the source access point) and include an indication that instructs the access terminal to delay handover until a specified condition is met. For example, handover may be delayed until the target access point becomes stronger than the source access point.
Abstract:
Paging load and/or registration load in a network is reduced by using different types of identifiers to specifying which nodes page an access terminal in the network. In some aspects, the network maintains a list that specifies that certain individual nodes (e.g., cells or sectors) are to page a given access terminal and/or that one or more zones (e.g., tracking areas) are to page the access terminal. In some aspects, an access terminal in a network may be configured to provide a forward-looking paging list to the network. The list provided by an access terminal may specify different types of node identifiers (e.g., individual node identifiers, subscriber groups, etc.). The network may then use the list to determine which nodes are to page a given access terminal such that when the access terminal moves to a different node, that node may already be configured to page the access terminal. In some aspect paging load and registration load are managed in a deployment that includes different types of access points. For example, access points of a first type (e.g., macro nodes) may provide service over relatively large coverage areas and access points of a second type (e.g., femto nodes) may provide service over smaller coverage areas and/or provide restricted service.
Abstract:
Systems and methodologies are described that facilitate transmitting access point types and/or restricted association parameters using broadcast signals, such as beacons, pilot signals, and the like. The type or restricted association information can be indicated by one or more intrinsic aspects of the signal, such as specified parameters. In addition, the type or information can be indicated by one or more extrinsic signal aspects, such as frequency, interval, periodicity, and the like. Using this information, a mobile device can determine whether an access point implements restricted association. If so, the mobile device can request an access point or related group identifier before determining whether to establish connection therewith. The identifier can be verified against a list of accessible access points or groups to make the determination.
Abstract:
Measurements are conducted on one or more carriers in a case where an access terminal supports reception on multiple carriers. Upon determining that an access terminal is capable of concurrently receiving on a given set of carriers, a measurement is conducted on one or more carriers of the set while receiving on or more other carriers of the set. Conversely, upon determining that an access terminal is not capable of concurrently receiving on a given set of carriers, a measurement is conducted on one or more carriers of the set while not receiving on or more other carriers of the set. In addition, data transfers to or from an access terminal on a carrier may be restricted (e.g., data transfers not scheduled or only low priority data transfers scheduled) during one or more subframes before or after the access terminal conducts a measurement on another carrier.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a determination is made of a first power available for transmitting a first signal using a first radio access technology while simultaneously transmitting a second signal using a second radio access technology different from the first radio access technology. An uplink grant is received and a determination is made regarding a second power for transmitting the first signal on uplink using the first radio access technology based on the uplink grant. A determination is made regarding a difference between the first power and the second power and the information related to the difference via the first radio access technology is reported based upon a trigger.
Abstract:
Techniques for originating a voice call by a UE after performing reselection with reprioritization are described. The UE may operate in an idle mode and may camp on a first wireless network of a first radio access technology (RAT), which may not support voice service. The first wireless network may have the highest priority among all wireless networks detected by the UE. The UE may receive an indication to originate a voice call. The UE may then perform reselection from the first wireless network to a second wireless network of a second RAT by modifying the priorities of the frequencies of the first wireless network and/or the second wireless network. The UE may then originate the voice call with the second wireless network, instead of the first wireless network, in order to avoid having to perform circuit-switched (CS) fallback from the first wireless network to the second wireless network.
Abstract:
The number of handover-related failures that occur in a communication system may be reduced by taking target access point conditions into account when declaring radio link failure and/or by delaying certain handover operations. In some aspects, criteria for radio link failure detection and access terminal-controlled mobility may take into account access point parameters related to neighboring cells that may be available as mobility targets. For example, filtering mechanisms for detecting radio link failure based on radio layer problem reports may also take into account the availability of various neighbor access points and their measured signal strengths. In addition, a handover command may be sent earlier than in conventional systems (e.g., the handover command may be sent even though the target access point is weaker than the source access point) and include an indication that instructs the access terminal to delay handover until a specified condition is met. For example, handover may be delayed until the target access point becomes stronger than the source access point.
Abstract:
Systems and methodologies are described that facilitate mapping multiple evolved packet system (EPS) bearers to a single relay eNB radio bearer. In particular, an upstream eNB can select a radio bearer of a downstream eNB for association to an EPS bearer; the selection can be based on a best effort match or substantially any logic. The upstream eNB can store an association between the radio bearer and EPS bearer for subsequent downstream packet routing. The upstream eNB can also provide an indication of the selected radio bearer to the downstream relay eNB to facilitate upstream packet routing therefrom. The upstream eNB can alternatively select the radio bearer of the downstream eNB for association to the EPS bearer based on a quality of service (QoS) class identifier (QCI) of the EPS bearer.
Abstract:
Systems and methodologies are described that facilitate assigning TEIDs, or portions thereof, to UEs or other devices during network attachment and/or dedicated bearer activation using one or more cell relays. Relay eNBs can request bearer establishment from a UE, which can be based on receiving an attach accept from an upstream node during attachment for the UE, receiving a bearer setup request from the upstream node, and/or the like. Once a bearer establishment response is received from the UE, the relay eNBs can store a TEID relating to the bearer. This can be a TEID that is at least partially received in the attach accept or bearer setup message, generated for the UE upon receiving the bearer establishment response, and/or the like. The TEID, or portion thereof, can be utilized for subsequent packet routing to the UE through one or more cell relays.