Abstract:
A defroster and a vehicle are provided. The defroster includes: a housing defining an air outlet; a heating device disposed in the housing; an air blower defining a blowing outlet and disposed in the housing; and an air duct defining a duct inlet and a duct outlet, the air duct being disposed between the blowing outlet and the heating device so that air blown out from the blower outlet enters the air duct via the duct inlet and goes out of the air duct via the duct outlet, then passes through the heating device to exchange heat with the heating device, and is discharged out of the housing via the air outlet, wherein an area of the duct inlet is different from that of the duct outlet.
Abstract:
Embodiments of the present disclosure are directed to a doped tin oxide. The doped tin oxide includes a tin oxide and at least one oxide of a doping element. The doping element includes at least one of vanadium and molybdenum. The doped tin oxide includes an amount of the tin oxide ranging from 90 mol % to 99 mol %, and an amount of the at least one oxide ranging from 1 mol % to 10 mol %.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First, a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. Then, a surface of the polymer substrate is irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. The surface of the polymer substrate is then subjected to chemical plating.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared by the method are provided. First, a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. Then, a surface of the polymer substrate is irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. The surface of the polymer substrate is then subjected to chemical plating.