Abstract:
A control method of electromotor comprises the following steps: setting an alternating axis target current according to the rotor angle velocity of the motor and setting a direct axis target current according to the torque of the motor; detecting and collecting the three-phase currents of the electromotor, simultaneously detecting the degree of the electromotor rotor position; converting the three-phase currents of the electromotor to an alternating axis actual current and a direct axis actual current by Park conversion and Clark conversion according to the degree of the rotor position; setting the difference between the target current and the actual current as the input of the current loop, outputting the required direct axis current and the required alternating axis current by PI regulation; calculating the three-phase voltage according to the required direct axis current and the required alternating axis current output by PI regulation and the degree of the electromotor rotor position; obtaining PWM control waveform through three-phase voltage, the said PWM control waveform controlling the conversion from the direct current to the alternating current, the converted alternating current driving the electromotor.
Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.
Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.
Abstract:
A method and an apparatus for controlling output torque of a motor for an electric vehicle in downhill mode. the method comprises following steps: detecting a tilt angle value ϑ, a current vehicle speed value V and an accelerator-pedal travel value Gain of the vehicle, determining whether the vehicle is in downhill mode or not, and if the result is positive, then calculating a downhill slip torque T1 of the vehicle under the tilt angle value ϑ, obtaining a maximum output torque T2, calculating an output torque T of the motor based on T1, T2, Gain and a given vehicle speed delimitative value Vref, and controlling the motor to output the calculated output torque T. The present invention ensures the vehicle speed not too high by controlling the output torque of an electric vehicle in downhill mode, even if the brake-pedal travel is zero.
Abstract:
The present invention discloses a hybrid power output system for outputting the power to the wheel driving shaft, comprising an engine, a first motor, a second motor, a battery, a first clutch, a second clutch and a constant-mesh fixed ratio reduction unit, wherein the first motor and the second motor are connected electrically with the battery; the engine is connected to the first motor via the first clutch; the first motor is connected to the second motor via the second clutch; the second motor is connected to the wheel driving shaft via the constant-mesh fixed ratio reduction unit. This hybrid power output system can enhance the comfort of the vehicle, save the space and reduce the cost, moreover, it can realize multiple drive modes to improve the power efficiency and reduce the fuel consumption.
Abstract:
A method of controlling an accelerator of a four-wheel drive electric vehicle comprises the steps of controlling power output of the vehicle by a sum of an output torque of a main drive motor and an output torque an auxiliary drive motor with the output torque of the main drive motor being determined by a position of the accelerator pedal. The output torque T0 of the auxiliary drive motor is determined by: obtaining a torque calculation factor GainAccSum that a cumulative value of the acceleration GainAcc of the accelerator pedal; determining a maximum output torque T of the auxiliary drive motor at a current speed of the vehicle; and calculating the output torque T0 of the auxiliary drive motor varying between 0 and T based on the torque calculation factor GainAccSum and the maximum output torque T of the auxiliary drive motor at the current speed of the vehicle.
Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.
Abstract:
A method for checking an out-of-step of a synchronous motor includes detecting three-phase currents of the synchronous motor; determining whether a relationship between the three-phase currents satisfies a preset requirement; and if no, determining that the synchronous motor is out of step. It is determined that the synchronous motor is out of step when amplitudes of each current of the three-phase currents are not equal or when the phase difference between the three-phase currents is not 120°.