PHOSPHORUS-DOPED TUBULAR CARBON NITRIDE MICRO-NANO MATERIAL AND APPLICATION THEREOF IN CATALYTIC TREATMENT OF EXHAUST GAS

    公开(公告)号:US20200282384A1

    公开(公告)日:2020-09-10

    申请号:US16809667

    申请日:2020-03-05

    Abstract: The invention discloses a phosphorus-doped tubular carbon nitride micro-nano material and application thereof in waste gas treatment. Melamine is partially hydrolyzed into cyanuric acid through a phosphorous acid-assisted hydrothermal method to form a melamine-cyanuric acid super molecular precursor; the center of the precursor starts to be pyrolyzed under heating calcination, and thus phosphorus-doped tubular carbon nitride is obtained; the phosphorus-doped tubular carbon nitride and sodium borohydride are mixed and subjected to low-temperature calcination in an inert gas atmosphere, and defect-modified phosphorus-doped tubular carbon nitride is obtained. The defect-modified phosphorus-doped tubular carbon nitride micro-nano material has a good photocatalytic effect on catalytic degradation of waste gas; besides, the production raw materials are abundant and easy to obtain, and the phosphorus-doped tubular carbon nitride micro-nano material is good in stability and recyclable and has application prospects in waste gas treatment.

    HONEYCOMB-LIKE HOMO-TYPE HETEROJUNCTION CARBON NITRIDE COMPOSITE MATERIAL AND PREPARATION METHOD THEREOF, AND APPLICATION IN CATALYTIC TREATMENT OF WASTE GAS

    公开(公告)号:US20190330061A1

    公开(公告)日:2019-10-31

    申请号:US16396611

    申请日:2019-04-26

    Abstract: Disclosed are a honeycomb-like homo-type heterojunction carbon nitride composite material and a preparation method thereof, and an application of the honeycomb-like homo-type heterojunction carbon nitride composite material in catalytic treatment of waste gas. The preparation method includes the following steps: with two different carbon nitride precursors namely urea and thiourea as raw materials, weighing certain amounts of the urea and the thiourea, adding the urea and the thiourea into a crucible, adding a certain amount of ultrapure water, placing the crucible in a muffle furnace, and carrying out calcination molding. The honeycomb-like homo-type heterojunction carbon nitride prepared by the one-step method has good photocatalytic effect to catalytic degradation of NO; meanwhile, the honeycomb-like homo-type heterojunction carbon nitride composite material has the advantages of rich and easily-available production raw materials, good stability, reusability, etc., and has application prospects in the field of treatment of NO in the air.

    PREPARATION METHOD OF A VISIBLE-LIGHT-DRIVEN CC@SNS2/SNO2 COMPOSITE CATALYST, AND APPLICATION THEREOF

    公开(公告)号:US20190126243A1

    公开(公告)日:2019-05-02

    申请号:US16172742

    申请日:2018-10-27

    Abstract: The present invention disclosed preparation method of a visible-light-driven CC@SnS2/SnO2 composite catalyst, and application thereof, comprising the following steps: preparing CC@SnS2 composite material in a solvent by using SnCl4.5H2O and C2H5NS as raw materials and carbon fiber cloth as a supporting material; calcining said CC@SnS2 composite material to obtain the visible-light-driven CC@SnS2/SnO2 composite catalyst. The present invention overcomes defects of the traditional methods of treating chromium-containing wastewater, including chemical precipitation, adsorption, ion exchange resin and electrolysis, and the photocatalytic technology can make full use of solar light source or artificial light source without adding adsorbent or reducing agent. In this case, the use of semiconductor photocatalyst to convert hexavalent chromium in chromium wastewater into less toxic and easily precipitated trivalent chromium greatly reduces the cost and energy consumption.

    TITANIUM DIOXIDE / SULFONATED GRAPHENE OXIDE / AG NANOPARTICLE COMPOSITE MEMBRANE AND PREPARATION AND APPLICATION THEREOF

    公开(公告)号:US20190126211A1

    公开(公告)日:2019-05-02

    申请号:US16172739

    申请日:2018-10-27

    Abstract: Titanium dioxide/sulfonated graphene oxide/silver nanoparticle composite membrane and its preparation method and application are disclosed. Mixing graphene oxide, sodium chloroethanesulfonate, and sodium hydroxide uniformly in the water, and then adding concentrated nitric acid to obtain sulfonated graphene oxide; mixing the aqueous solution of said sulfonated graphene oxide with the aqueous solution of silver nitrate, stirring in the dark, then adding ascorbic acid, and continuing to stir to obtain a silver nanoparticle/sulfonated graphene oxide composite material; dispersing said silver nanoparticle/sulfonated graphene oxide composite material in water, and then deposited on said titanium dioxide nanorods arrays by vacuum deposition, and vacuum dried to obtain titanium dioxide/sulfonated graphene oxide/silver nanoparticle composite membrane. The membrane possessed photocatalytic effect under UV light and special wettability: super-hydrophobic oil under water/super-hydrophobic under oil, which could in situ separation and degradation of oil/water emulsion.

    MONOMER FOR POLYMER GEL, POLYMER GEL AND PREPARATION THEREFOR

    公开(公告)号:US20230365496A1

    公开(公告)日:2023-11-16

    申请号:US18011433

    申请日:2021-02-01

    CPC classification number: C07C305/26 C07F7/1804 C07F7/188 C07C303/24

    Abstract: Please replace the following substitute abstract for the abstract currently on file: Disclosed are a monomer for a polymer gel, a polymer gel and a preparation method therefor. The preparation method includes: reacting 4,4′,4″-trihydroxytriphenylmethane with tert-butyldimethylchlorosilane to obtain TPC-OTBS; reacting 4,4′,4″-trihydroxy triphenylmethane with sulfuryl fluoride in the presence of triethylamine to prepare TPC-OSO2F; and dissolving the TPC-OTBS and TPC-OSO2F in DMF, then adding DBU and ultrasonically dispersing same until uniform, and letting same stand to obtain a polymer gel. The gel obtained by the present invention can selectively adsorb an organic solvent by means of electrostatic interaction and Van der Waals force. The surface and internal morphologies of a solid material are characterized by SEM and TEM, in which the porous morphology of the solid material is found, and most of the pores are macropores.

Patent Agency Ranking