Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A signal transmission method based on a filter bank, includes obtaining by a transmitter pre-equalization information, wherein the pre-equalization configuration information indicates whether pre-equalization is enabled, if the pre-equalization configuration information indicates that the pre-equalization is enabled, generating by the transmitter pre-equalization coefficients according to a pre-equalization manner, and performing pre-equalization operation to transmission signals according to the pre-equalization coefficients, and performing modulation based on the filter bank.
Abstract:
A method and an apparatus for transmitting a reference signal. A first reference signal is generated according to a data signal, an interference relationship between adjacent carriers, and a predefined second reference signal. The data signal and the first reference signal is modulated and sent on a corresponding carrier utilizing non-orthogonal multi-carrier modulation waveform. A method for receiving a reference signal includes receiving, on a reference signal carrier, a first reference signal modulated utilizing non-orthogonal multi-carrier modulation waveform, processing the received first reference signal using a predefined processing method, performing channel estimation or synchronization according to a result of the processing and a predefined second reference signal.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as long term evolution (LTE). The present disclosure provides a method and apparatus of receiving Downlink Control Information (DCI). The method may include: a User Equipment (UE) determines a number of detections corresponding to a DCI detection ability of the UE and a number of detections corresponding to a DCI format; the UE reduces the number of detections corresponding to the DCI format, wherein the reduced number of detections corresponding to the DCI format is smaller than or equal to the number of detections corresponding to the DCI detection ability; and the UE receives the DCI according to the reduced number of detections corresponding to the DCI format. According to the method and apparatus of the present disclosure, a complexity of a procedure of receiving the DCI can be reduced.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as long term evolution (LTE). The method for operating a user equipment (UE) in a wireless communication system is provided. The method includes detecting a synchronization signal block, performing downlink synchronization process according to the detected synchronization signal block, and determining time-frequency resources of an anchor subband; acquiring random access configuration information according to the time-frequency resources of the anchor subband, performing a random access process according to the random access configuration information, and completing uplink synchronization; and acquiring control information in a control channel band, and performing data communication with a base station in the data transmission band according to the control information.
Abstract:
The disclosure provides methods and devices for confirming the resource configuration of uplink signal transmission. The method includes receiving, from a base station (BS), a synchronization signal and physical broadcasting channel (PBCH) block (SSB); receiving, from the BS, information configuring a physical random access channel (PRACH) occasion; and transmitting, to the BS, an uplink signal on a resource set associated with the SSB.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present application relates to the field of radio communication technology, and discloses a random access method, a terminal equipment, and a computer readable storage medium, wherein the random access method includes: receiving configuration information for random access from a base station; determining available first physical random access channel transmission occasions (ROs) according to at least one configured CSI-RS based on the configuration information; and performing random access according to the available first ROs. The method of the embodiment of the present application enables the UE to determine the time-frequency resources for random access by the configured CSI-RS indication.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments of the present invention provide a method for RACH re-attempt, a user equipment and a base station. The method comprises the steps of: by a base station, determining system configuration information and transmitting the system configuration information to a user equipment; and then, by the user equipment, transmitting a preamble sequence to perform random access, and if the random access is failed, performing RACH attempt according to the received RACH re-attempt configuration information to perform random access until a preset decision condition is satisfied. The embodiment of the present invention is used for RACH re-attempt when random access fails.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for uplink power control, which is applied to a User Equipment (UE), and the method includes: determining a timing between a power control command and a Physical Uplink Control Channel (PUCCH), which adopts the power control command to control power. The present disclosure also provides a corresponding device.
Abstract:
The present disclosure provides a method for transmitting uplink information, including: determining a frequency band for carrier sensing and an allocation manner of uplink frequency domain resources by receiving a signaling or by predefining via a protocol; performing carrier sensing at the determined frequency band for carrier sensing; and transmitting uplink information in uplink frequency domain resources determined according to the allocation manner of uplink frequency domain resources when a carrier is idle. The present disclosure also provides a user equipment for transmitting uplink information.
Abstract:
A power control method and apparatus are provided in the present application. The power control method includes: receiving resource occupation indication information, where the resource occupation indication information is used to indicate resource occupation situation of second priority data on a PUSCH for transmitting first priority data; determining the resource occupation situation of the PUSCH for transmitting the first priority data according to the resource occupation indication information; and determining power of the PUSCH for transmitting the first priority data according to the resource occupation situation of the PUSCH for transmitting the first priority data.