Abstract:
The present invention relates to a method and an apparatus for switching a data path in a wireless communication system supporting device-to-device (D2D) communication. The method for switching a path of a base station in a wireless communication system supporting device-to-device communication, according to the present invention, comprises the steps of receiving, from a first terminal, a measurement report including a D2D identifier of a second terminal that performs a direct communication with the first terminal; sending a query to a D2D server for a network identifier corresponding to the D2D identifier of the second terminal; and determining whether to switch a direct path between the first terminal and the second terminal to a local path on the basis of the network identifier of the second terminal obtained from the D2D server.
Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data transmission rate than a 4th generation (4G) communication system such as Long-Term Evolution (LTE). The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety related services, and the like, on the basis of 5G communication technologies and IoT-related technologies. In addition, an operation method of a terminal in a wireless communication system may comprise the steps of: determining service information required by a V2X application and determining a V2X transmission mode; determining QoS information of a service required by the V2X application; obtaining sidelink radio bearer configuration information corresponding to the QoS information; and, using the obtained sidelink radio bearer configuration information, transmitting and receiving V2X packets by means of a device-to-device communication method.
Abstract:
Provided is a method of performing a random access procedure, the method including: selecting, from among a plurality of Synchronization Signal Blocks (SSBs), a first SSB that exceeds a threshold value of signal power; transmitting a contention-based random access preamble corresponding to the first SSB; receiving a first Random Access Response (RAR) corresponding to the contention-based random access preamble; obtaining a first Media Access Control Protocol Data Unit (MAC PDU) corresponding to a size of uplink (UL) resource allocation in the first RAR; transmitting a message3 (Msg3) including the first MAC PDU; determining, by transmitting the Msg3, whether contention is resolved; and when the contention is not resolved, performing a contention-free random access procedure.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method includes identifying whether a medium access control (MAC) entity of the terminal is configured with a logical channel (LCH)-based prioritization, identifying whether a first uplink grant is associated with a random access, determining the first uplink grant to be a prioritized uplink grant, and transmitting an uplink signal based on the prioritized uplink grant.
Abstract:
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed are a method and a terminal for performing same, the method being performed by a terminal in a wireless communication system and comprising the steps of: triggering a buffer status report (BSR); triggering a scheduling request (SR) for the BSR; transmitting a medium access control (MAC) protocol data unit (PDU) including the BSR before the transmission of the SR; and determining whether the triggered SR is cancelled on the basis of information about a logic channel corresponding to the SR and logic channel information about the MAC PDU.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Disclosed is a method of operating a user equipment UE in a wireless communication system, including determining a data transmission rate requirement of a vehicle-to-everything (V2X) application and acquiring data rate information according to the required data transmission rate, transmitting the data rate information to a base station and acquiring a sidelink radio link control (RLC) function configuration parameter, and transmitting the acquired sidelink RLC function configuration parameter to another UE.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method performed by a terminal in a communication system is provided. The method includes receiving, from a base station, configuration information on a configured grant for uplink transmission, the configured grant being configured with an autonomous transmission; in case that a previous configured grant for a hybrid automatic repeat request (HARQ) process was not prioritized, a transmission of a first medium access control (MAC) protocol data unit (PDU) obtained for the HARQ process has not been performed, and a size of the first MAC PDU matches a size of a configured grant, identifying that the first MAC PDU has been obtained for the configured grant; and in case that the configured grant is a prioritized uplink grant, delivering the obtained first MAC PDU.
Abstract:
The disclosure relates to a communication technique for converging an IoT technology with a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The disclosure may be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, a security and safety related service, or the like) based on a 5G communication technology and an IoT related technology. The disclosure provides a method and apparatus for determining a transmission time point of a type 1 configured grant in a wireless communication system.
Abstract:
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transfer rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retailing, security and safety-related services, etc. on the basis of 5G communication technologies and IoT-related technologies. Disclosed in the disclosure is a method for measurement report/event operation and network signaling in an UE autonomous handover.
Abstract:
A method of operating a terminal in a wireless communication system is provided. The method includes obtaining, from a radio link control (RLC) entity associated with a cell group of the terminal, information about a number of retransmissions of a packet, identifying whether packet duplication is activated, based on information indicating that the number of retransmissions of the packet reaches a maximum number of retransmissions of the packet, and transmitting, to a base station, a message indicating a failure of retransmission of the packet, based on a result of the identifying.