Abstract:
A method for magnetic resonance imaging and plaque recognition includes: obtaining magnetic resonance undersampled K-space data; transforming the magnetic resonance undersampled K-space data to an image domain through inverse Fourier transform to obtain a preprocessed image; reconstructing the preprocessed image through a pre-established deep learning reconstruction model to obtain a high-resolution imaging image of a blood vessel wall; and recognizing plaques in the high-resolution imaging image of the blood vessel wall through a pre-established deep learning plaque recognition model. A neural network corresponding to the pre-established deep learning reconstruction model is a dense connection network. The magnetic resonance undersampled K-space data is head-and-neck combined magnetic resonance undersampled K-space data of the blood vessel wall.
Abstract:
An eddy-current correction method and apparatus, a mobile terminal and a readable storage medium are provided. The method includes: step S1: reading gradient-recalled echo sequence by means of bipolarity, so as to acquire a multi-echo image; step S2: estimating a first-order term coefficient of an extra phase term introduced by an eddy-current in the acquired multi-echo image; step S3: removing the estimated first-order term coefficient, and estimating a zero-order term coefficient of the extra phase term introduced by the eddy-current in the collected multi-echo image; step S4: removing, according to the estimated first-order term coefficient and the zero-order term coefficient, an error of the extra phase term introduced by the eddy-current. The eddy-current correction method removes the phase error caused by the eddy-current in the acquired image, thereby ensuring the correctness of the subsequent water-fat separation algorithm result.
Abstract:
The present invention discloses a PET image reconstruction method, a computer storage medium, and a computer device. The method includes: step 1, obtaining projection data Y and a system matrix P of a PET image; step 2, constructing an imaging model equation Y=PX, in which X is a reconstructed PET image; step 3, obtaining the initial reconstructed image X, and iteratively updating the initial reconstructed image X according to a first objective function to obtain a first reconstructed image; step 4, iteratively updating the first reconstructed image according to the second objective function to obtain the second reconstructed image; and step 5, determining whether an iteration condition is satisfied, if yes, outputting the current round of iteration to obtain the second reconstructed image as a final PET reconstructed image, and if not, returning to step 3 and using the second reconstructed image in the current round of iteration as an initial reconstructed image in the next round of iteration. The reconstruction algorithm of the present invention does not depend on a conformity degree between anatomical structure information and functional information, and can distinguish image edges well regardless of whether there is noise interfering with the image edges.
Abstract:
A local shimming system for magnetic resonance imaging and the method thereof, wherein the shimming method comprises the following steps: collecting B0 field map information using two-dimensional gradient echo (301); calculating and evaluating the homogeneity of B0 (302); optimizing the current of each channel shim coil (303); determining whether the minimum standard deviation value of Δf is obtained (304); outputting an optimal current combination values and setting an optimum current value corresponding to each channel of the shim coil on the current control software (305); and testing and evaluating the homogeneity of B0 to achieve the shimming goal (306).
Abstract:
A dual-nuclear radio frequency (RF) coil device includes a first RF coil and a second RF coil. The first RF coil includes at least one adjustment capacitor, the first RF coil is configured to generate a first magnetic field, and a direction of a primary magnetic field of the first magnetic field is a first direction. The second RF coil includes an electric dipole and a tuning and matching circuit connected between two conductors of the electric dipole. The second RF coil is configured to generate a second magnetic field and a direction of a primary magnetic field of the second magnetic field is a second direction; the electric dipole is disposed in a center line of the first RF coil and an insulating layer is disposed between the electric dipole and the first RF coil; and the first direction is perpendicular to the second direction.
Abstract:
A magnetic resonance multi-core array radio frequency device and a magnetic resonance signal receiving method are provided. The device comprises a radio frequency receiver which includes a radio frequency coil (11), a low noise preamplifier (13), a multiplexer (15), a radio frequency band-pass filter (17), a program control amplifier (19), a frequency synthesizer (21), a mixer (23), an analog to digital converter (29) and a controller (31). The controller (31) is used for controlling the multiplexer (15) to select a corresponding radio frequency coil channel, a corresponding filtering channel, gain of the radio frequency band-pass filter (17), and receiving a magnetic resonance digital signal transmitted by the analog to digital converter (29). Due to the multiplexer (15), there is no need to configure different circuits respectively for different nuclear magnetic resonance, redundancy of the circuits is reduced, and cost is reduced.