Abstract:
An apparatus separating a polarizable analyte using dielectrophoresis includes a vessel including a membrane having a plurality of nano- to micro-sized pores, the membrane disposed inside the vessel, electrodes generating spatially non-uniform electric fields in the nano- to micro-sized pores of the membrane when an AC voltage is applied to the electrodes, and a power source applying the AC voltage to the electrodes, wherein a sectional area of the pores varies along a depth of the pores. A method of separating a polarizable material uses the apparatus.
Abstract:
Provided is a field effect transistor (FET) type biosensor including a source electrode, a gate, and a drain electrode. A ligand that can bind to a side of a nucleic acid is added to the surface of the gate. In a conventional FET type biosensor, it is difficult to detect a signal within the debye length because a target nucleic acid is directly fixed to the surface of a gate of the conventional FET. However, in the present invention, this problem can be overcome and the debye length can be increased by treating the surface of a gate of an FET sensor with a ligand that can bind to a side of a nucleic acid. The ligand can be adsorbed onto the surface of the gate. In this case, the nucleic acid is adsorbed parallel to the surface of the gate, not perpendicular to the surface of the gate, thus generating an effective depletion region. In addition, hybridization efficiency can be increased because a hybridized sample can be injected into an FET sensor at high ionic strength.
Abstract:
Provided is a linker functional group patterning method for biomolecule immobilization. The patterning method includes preparing a coating composition including a hydrophobic group-containing silane compound and a hydrophilic group-containing silane compound; forming a surface tension control layer by coating the coating composition on a substrate for biomoleucle immobilization; and forming a linker functional group pattern on the surface tension control layer using a coating composition including a linker functional group-containing compound followed by thermal treatment. The linker functional group pattern is formed in a uniform size and distribution and contains high-density linker functional groups.
Abstract:
Provided is a method of purifying nucleic acids using hydrogen bonding and an electric field, including: bringing a sample containing target nucleic acids into contact with an electrode coated with a material capable of forming hydrogen bonds with the target nucleic acids; applying a positive voltage to the electrode to move the target nucleic acids closer to the electrode so as to form hydrogen bonds with the material on the electrode; washing the electrode; and applying to the electrode a negative voltage to elute the bound target nucleic acids. According to the method, selectivity to nucleic acids and proteins increases due to hydrogen bonding, nucleic acid purification is possible within a short time through an electric field, and the bound nucleic acids can be efficiently eluted.
Abstract:
A microarray including hydrogel and a plurality of probes which are immobilized in discrete regions of the hydrogel, and a method of preparing the same are provided. When using the microarray and method, a solid substrate is not required and many biomolecules can be immobilized in a small volume, thereby obtaining high sensitivity. Since gel can be cut to obtain many pieces, many microarrays can be prepared at once.