Abstract:
A heart valve leaflet including a thermoplastic polyurethane (TPU) mesh material that has a stiffness that is comparable to a native heart valve leaflet, such that it functionally mimics a native heart valve leaflet. The heart valve leaflets optionally include one to three layers of cells cultured on each side of the mesh material. Also disclosed is a heart valve including the heart valve leaflet and a frame.
Abstract:
The disclosure relates to a method of automatically producing a three-dimensional (3D) segmentation of a heart chamber, the method comprising: obtaining data sets from cardiac magnetic resonance imaging (MRI) or ultrasound, generating a 3D segmentation of the heart chamber from the data sets using an active contour method, modifying the 3D segmentation by adding a plurality of intra-chamber structures; and identifying an enclosing myocardium using the 3D segmentation generated by the method.
Abstract:
A multi-planar velocimetry approach to characterize 3D incompressible flows based on 2D perpendicular (or otherwise complementary) velocity fields is described. Two-dimensional velocity fields acquired on the planes are reconstructed into a 3D velocity field through interpolation and the imposition of a fluid incompressibility constraint.
Abstract:
A percutaneous heart valve delivery system including a valve delivery catheter coupled with a first inflatable balloon positioned at a distal end of the valve delivery catheter, wherein the first inflatable balloon is configured to fracture a previously implanted prosthetic heart valve; and a replacement transcatheter heart valve positioned proximal to the first inflatable balloon, wherein the replacement transcatheter heart valve is configured to be implanted subsequently within the previously implanted, fractured prosthetic heart valve, following fracture of the previously implanted heart valve without withdrawal of the percutaneous heart valve delivery system. Also disclosed are methods of implantation of a new heart valve within a previously implanted prosthetic heart valve and methods of valvuloplasty of a native heart valve.
Abstract:
A gimbal handle assembly including: an inner gimbal and an outer gimbal that are concentrically linked and have pivot axes that are orthogonal relative to each other, a spool coupled to and rotatable around the outer gimbal, and a plurality of draw lines attached to the spool in a circumferential configuration, wherein rotation of the spool and/or rotation of the spool and the outer and inner gimbals increases or reduces tension in the draw lines. Also disclosed are a transcatheter valve delivery assembly that includes the gimbal handle assembly, a multi-lumen catheter, a sleeve attached to a distal end of the multi-lumen catheter, and a transcatheter heart valve including an expandable valve frame. Methods of delivering the transcatheter valve to a subject are described, wherein pitch and yaw orientations of the transcatheter valve can be precisely controlled with enhanced degrees of freedom.
Abstract:
Devices, systems and methods related to techniques for performing four-chamber segmentation of echocardiograms are disclosed. In one example aspect, a method for generating segmented image data based on an input echocardiogram includes receiving an input echocardiogram that includes information associated with four chambers of a heart, performing segmentation on the information associated with the four chambers using an adversarial model that comprises a first artificial neural network with multiple layers, and combining data from selected layers of the first artificial neural network to generate an output image that includes the segmented four chambers of the heart.
Abstract:
Methods for synchronizing the actions of a pulsatile cardiac assist device with a dysfunctional heart using a cardiac pacemaker. Aspects include receiving a signal from the pacemaker and actuating the pulsatile cardiac assist device in response to the signal from the pacemaker to either help push blood out of the heart during systole or to help suck blood from the atria during diastole.
Abstract:
This disclosure is directed to a collapsible atrioventricular valve prosthesis. The valve includes an annulus wire frame having at least two prongs extending therefrom. At least one catch is formed between each of the prongs and leaflets are attached with the frame, catch, and prongs form the valve. The prongs project a first direction and the catch projects in a direction away from the prongs. The valve is collapsible to provide for easy delivery to an atrioventricular junction or other desired location within a heart. Once deployed, the valve can expand with the catches acting to hold the annulus frame secure on an atrioventricular junction, at a ventricular side or at an atrial side of a heart.
Abstract:
Described is an apparatus for transcatheter detachment of a stent from a delivery device. A single-ended draw line with loops is inserted through a restraining hole in a glide and a release line is inserted through the loops. The single-ended draw line is thus prevented from pulling through the restraining hole while the release line is through the loops. The single-ended draw line is free to pass through the restraining hole after the release line is pulled out of the loops and thereafter pulled free of stent holes formed through a stent, thereby detaching the stent at a desired location.
Abstract:
The disclosure relates to method of processing three-dimensional images or volumetric datasets to determine a configuration of a medium or a rate of a change of the medium, wherein the method includes tracking changes of a field related to the medium to obtain a deformation or velocity field in three dimensions. In some cases, the field is a brightness field inherent to the medium or its motion. In other embodiments, the brightness field is from a tracking agent that includes floating particles detectable in the medium during flow of the medium.