Abstract:
A liner panel for use in a combustor of a gas turbine engine, the liner panel includes a radiused gate blended into a hot side of the liner panel. A combustor for a gas turbine engine including a liner panel mounted to a support shell via a multiple of studs, the liner panel including a radiused gate blended into a hot side of the liner panel, the hot side including a thermal barrier coating. A method of manufacturing including casting a radiused gate tangentially cast into a hot side of a liner panel; and applying a thermal barrier coating to the hot side of the liner panel over the remnants of the radiused gate.
Abstract:
According to one embodiment of the present invention, a sealing arrangement includes a turbine static structure with an inner case and a seal ring each having contact surfaces. The sealing arrangement also has a bearing compartment with a contact surface. A piston seal is positioned between the inner case, the seal ring, and the bearing compartment and is configured to contact the contact surfaces.
Abstract:
A mid-turbine frame for a gas turbine engine includes an inner frame case defining a sealed torque box cavity. The mid-turbine frame also includes multiple spokes protruding radially outward from the inner frame case. The mid-turbine frame also includes at least one service line connected to the inner frame case.
Abstract:
A method is provided for calibrating an active clearance control system for a plurality of turbine engines. During this method, a squeeze test is performed between a tip of a rotor blade and a shroud. Results of the squeeze test are applied to adjust a gap between the tip and the shroud. The performance of the squeeze test and the application of the results may be individually performed for each of the turbine engines.