Abstract:
The present invention relates to a device and method for measuring chemiluminescence, and an object is to provide a compact and reliable device and method for measuring chemiluminescence. The present invention is designed to include a vessel group, a nozzle head having a gas suctioning and discharging mechanism, one or more nozzles, which are in communication with the suctioning and discharging mechanism, and to a front end of which a dispensing tip is attachable, and a magnetic force means capable of causing a magnetic field inside the attached dispensing tip, a nozzle moving mechanism capable of moving the nozzle relative to the vessel group, a linkage part provided to the nozzle head, linkable to the reaction vessel through an opening thereof and capable of forming a confined space shielded from external light by means of linkage with the reaction vessel, a linkage part moving mechanism capable of moving the linkage part relative to the reaction vessel, a photometer, a shutter for bringing into a light guiding state or light shielding state between inside the reaction vessel and the photometer in relation to the linkage of the linkage part to the reaction vessel or release thereof, and a reagent injection flow channel capable of injecting a reagent for chemiluminescence, which is provided to the linkage part, and a front end of which is located in the reaction vessel by means of the linkage.
Abstract:
A culture system comprises: a preparatory culture vessel and a main culture vessel that accommodate cells and a solution; a main stage that holds the preparatory culture vessel and the main culture vessel; a connecting tube that connects the culture vessels; a valve that opens and closes the connecting tube; and a rotating mechanism that rotates the main stage and imparts a height difference between the culture vessels to transfer the cells and solution by dropping between the culture vessels.
Abstract:
It is an object to provide a deforming element-included dispensing tip, a deforming element-included dispensing device, and a deforming element-included dispensing processing method not requiring any cylinder and capable of achieving highly precise position control and enhancing integration of higher density and reducing the burden in the quality control in reaction processing of a biological material for extraction of DNA and the like. A tip-shaped container formed with a non-deforming wall having an opening portion at an upper side and an inlet unit at a lower side for allowing fluid to flow in and flow out and a sealing plug attached to the opening portion so as to seal the opening portion are provided, and the sealing plug is configured to be provided with a deforming element that has a deforming wall that is formed so as to be able to extend in a lower direction in the tip-shaped container in accordance with pressing from an outside and so as to be urged to shrink or be able to shrink in an upper direction or formed so as to be able to be shrunk.
Abstract:
The invention relates to an optical measurement device for a reaction vessel, and a method therefor. An object is to measure the optical state within a reaction vessel in an efficient, rapid, and highly reliable manner, without an expansion of the device scale. The configuration includes: a vessel group in which two or more reaction vessels are arranged; a light guide stage having two or more linking portions to which front ends of light guide portions, which have a flexibility, that optically connect with the interior of the linked reaction vessels, are provided; a connecting end arranging body that has an arranging surface that arranges and supports along a predetermined path two or more connecting ends, to which back ends of the light guide portions, in which the front ends thereof are provided to the linking portions, are provided, the connecting ends are provided corresponding to the respective linking portions; a measurement device provided approaching or making contact with the arranging surface that has measuring ends that are successively optically connectable with the respective connecting ends along the predetermined path, and in which light from within the reaction vessels is receivable by means of optical connections between the connecting ends and the measuring ends; and a light guide switching mechanism that relatively moves the respective connecting ends arranged on the connecting end arranging body and the respective measuring ends such that they are successively optically connected.
Abstract:
On magnetic particles serving as a first support, an antibody against a nonspecific reaction factor is immobilized. These magnetic particles are mixed with a specimen and suspended therein. After suspending, the suspension is sucked up into a pipette chip and a magnet comes close to the pipette chip. While remotely constraining with the magnet the magnetic particles carrying the nonspecific reaction factor bonded thereto, the residual liquid is discharged into a well. Thus, the removal of a contaminant contained in the specimen is completed. The thus treated specimen discharged into the well is subjected to an immunoassay. The magnetic particles carrying the antibody immobilized thereon are mixed with the treated specimen and suspended therein. The suspension is sucked up into a pipette chip and the magnetic particles carrying an antigen bonded thereto are separated by use of the magnet. The magnetic particles carrying the antigen bonded thereto are washed, mixed with an enzyme-labeling solution, which contains a second support, and suspended therein. After suspending, the magnetic particles being labeled and carrying the antigen bonded thereto are mixed with a substrate solution and subjected to the measurement of emission intensity, etc.