Abstract:
The invention relates to a method for operating a group of wind turbines in a wind power plant coupled to a utility grid, comprising the steps of determining that a wind turbine should be deactivated in response to receiving a power curtailment command from the grid, and retrieving data from each wind turbine in the group of wind turbines. Further, the method comprises ranking all the wind turbines according to a set of ranking criteria and based on the retrieved data, and selecting a wind turbine to be deactivated based on the ranking. Further, the steps of data retrieval and ranking of all the wind turbines including any deactivated wind turbines in the group are repeated at time intervals, and the wind turbine to be deactivated is re-selected based on this updated ranking. The data may include a down time for any presently deactivated wind turbine in the group of wind turbines, reflecting for how long time the wind turbine has been presently deactivated, and the set of ranking criteria may then comprise a pause criterion taking into account the down time.
Abstract:
The invention relates to a power plant controller for controlling wind turbine generators. More particularly, the invention relates to a method for compensating data obtained from measurements at a connection point to the grid in case of a communication failure where communication of such data is lost or becomes unreliable. The measured data are used in the power plant controller for determining setpoints for controlling the wind turbine generators' production of active and reactive power. In response to detection of a communication fault a new setpoint is determined independently of new measured grid data by reconfiguring parts of the power plant controller.
Abstract:
The invention relates to a method for controlling injection and absorption of reactive power in a wind power plant (WPP). In addition to wind turbine generators (WTG), the wind power plant comprises reactive power regulating devices, such as MSU and STATCOM devices. The reactive power regulating devices are controlled by wind power plant controller so that the combined amount of reactive power produced by the wind turbine generators and the reactive power regulating devices satisfies a desired amount of reactive power. In case of communication fault between the power plant controller and one of the reactive power regulating devices, the power plant controller is reconfigured so as to compensate the capability of the reactive power regulating device to inject or absorb the amount of reactive power.