Abstract:
Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto are provided. A monitoring apparatus worn by a subject includes a physiological sensor that detects physiological information from the subject, an environmental exposure sensor that detects at least one airborne analyte in a vicinity of the subject, and a processor. The processor processes signals produced by the environmental exposure sensor and calculates a volumetric concentration of the least one airborne analyte. In addition, the processor process signals produced by the at least one physiological sensor to determine a physiological response of the subject to the at least one airborne analyte. The apparatus also includes a motion sensor and the processor calculates a distance traveled by the subject via signals produced by the motion sensor and calculates a volume of air to which the subject has been exposed using the distance traveled by the subject.
Abstract:
A monitoring device includes a housing configured to be attached to a body of a subject. An optical emitter, optical detector, and sensor for measuring motion noise are located within the housing. Light transmissive material is in optical communication with the optical emitter and detector and is configured to deliver light from the optical emitter to one or more locations of the body of the subject and to collect light external to the housing and deliver the collected light to the detector. A signal processor is configured to receive and process signals produced by the optical detector and the motion noise sensor, and to remove noise from the signals produced by the optical detector. The signal processor may generate physiological parameters for the subject such as heart rate, blood flow, blood pressure, VO2max, heart rate variability, respiration rate, and blood gas/analyte level.
Abstract:
Wearable apparatus for monitoring various physiological and environmental factors are provided. Real-time, noninvasive health and environmental monitors include a plurality of compact sensors integrated within small, low-profile devices, such as earpiece modules. Physiological and environmental data is collected and wirelessly transmitted into a wireless network, where the data is stored and/or processed.
Abstract:
A method of presenting data from a remote sensor that is monitoring a subject includes obtaining a data stream from the remote sensor, wherein the data stream includes a sensor metric, a metric identifier, dynamically updated integrity information about an accuracy of the sensor metric, and a diagnostic assessment of a health condition of the subject, and then displaying, via a display associated with the client device, the diagnostic assessment of the health condition of the subject, a metric statistic associated with the diagnostic assessment, and a recommendation as to an action to be taken by the subject.
Abstract:
Systems and methods for presenting sensor data are provided and include collecting physiological data and meta data from a subject via a sensor system, wherein the sensor system comprises a sensor element, a signal processor, and memory in communication with the signal processor. The subject meta data is processed by the signal processor to determine metric features, the metric features are processed by the signal processor to determine a subject-specific metric statistic for the subject, and the physiological data is processed by the signal processor to generate a sensor metric. The sensor metric is then presented for display via a display.
Abstract:
A monitoring device configured to be attached to a subject includes a photoplethysmography (PPG) sensor configured to measure physiological information from the subject, a blood flow stimulator, and a processor configured to process signals from the PPG sensor to determine a signal-to-noise level of the signals. In response to a signal-to-noise level determination, the processor is configured to instruct the blood flow stimulator to increase blood perfusion at a location where the PPG sensor is attached to the subject. The signal-to-noise level determination may be a determination that the signal-to-noise level is below a threshold level. The blood flow stimulator may be a heating element or light source configured to heat the location of the subject.
Abstract:
An ear-worn device includes a speaker, an optical emitter, an optical detector, a processor, and a housing configured to be positioned within an ear of a subject, wherein the housing encloses the speaker, optical emitter, optical detector, and processor. The housing includes at least one window that exposes the optical emitter and optical detector to the ear of the subject, and the housing includes at least one aperture through which sound from the speaker can pass. Light transmissive material is located between the optical emitter and the at least one window and is configured to deliver light emitted from the optical emitter to an ear region of the subject at one or more predetermined locations. Light transmissive material is positioned between the optical detector and the at least one window and is configured to collect light external to the housing and deliver the collected light to the optical detector.
Abstract:
A monitoring device configured to be attached to a subject includes a photoplethysmography (PPG) sensor configured to measure physiological information from the subject, and at least one processor configured to process signals from the PPG sensor to determine heart rate and RR-interval (RRi) for the subject, and to determine a heart rate pattern for the subject over a period of time. The at least one processor is configured to change a sampling frequency of the PPG sensor for determining RRi in response to the determined heart rate pattern. The at least one processor is configured to reduce the sampling frequency of the PPG sensor in response to determining a pattern of heart rate below a threshold.
Abstract:
A wearable device collects a plurality of photoplethysmography (PPG) waveforms from a PPG sensor in the wearable device and collects inertial data associated with subject motion from an inertial sensor in the wearable device. The wearable device processes the inertial data in an assessment processor of the wearable device to determine a data integrity of the plurality of PPG waveforms and, responsive to the determined data integrity, processes the plurality of PPG waveforms in the assessment processor using a neural network comprising thousands of coefficients to generate an assessment of the subject blood pressure.
Abstract:
A headset includes a housing defining an audio cavity, a speaker located within the audio cavity, and first and second sensor modules within the housing in spaced-apart, angled relationship to each other. The housing includes an aperture through which sound from the speaker can pass, and the first and second sensor modules are on opposing sides of a direction from the speaker to the aperture. The first sensor module is configured to direct electromagnetic radiation at a first target region of an ear of a person wearing the headset and to detect a first energy response signal therefrom that is associated with one or more physiological metrics of the subject, and the second sensor module is configured to direct electromagnetic radiation at a second target region of the ear and to detect a second energy response signal therefrom that is associated with the one or more physiological metrics.