Abstract:
Described are techniques for fabricating one or more parts of a valve used in a liquid chromatography system. At least one of a rotor and a stator are provided. The rotor is included in the valve and has a first surface facing a stator. The stator is included in the valve and has a second surface facing the rotor. A pattern is formed in at least one of the first surface and the second surface. Forming the pattern includes compressing the at least one surface by applying pressure thereto causing displacement of material to form at least one groove.
Abstract:
A method for making a liquid-chromatography apparatus includes inserting two inner conduits into an intermediate tube, inserting the intermediate tube into an outer tube, forming a proximal seal between the intermediate tube and at least one of the inner conduits, and forming a distal seal between the intermediate tube and at least one of the inner conduits. A liquid-chromatography apparatus includes an outer tube, an intermediate tube disposed in the outer tube, two inner conduits disposed in the intermediate tube, a proximal seal between the intermediate tube and at least one of the inner conduits, and a distal seal between the intermediate tube and at least one of the inner conduits.
Abstract:
A method of mass spectrometry is disclosed comprising mass analysing an eluent from a chromatography device and obtaining parent ion data sets and corresponding product ion data sets, and determining whether, in a first product ion data set, one or more product ions are present that are related to one or more parent ions in a corresponding first parent ion data set, based on the mass or mass to charge ratio and/or intensity of the one or more product ions and the one or more parent ions. If it is determined that the one or more product ions are present, the method further comprises removing the one or more product ions from one or more second product ion data sets to produce one or more second modified product ion data sets and/or removing ions other than the one or more product ions from the first product ion data set to produce a first modified product ion data set.
Abstract:
An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample. An emitter assembly includes having a deformable end portion, an inlet near the deformable end portion to receive the sample eluent from the microfluidic substrate, and an electrically conductive outlet portion to emit a spray of the sample eluent. A force-applying unit applies a force to the emitter assembly that urges the deformable end portion into contact with the microfluidic substrate. The deformable end portion is more elastic than the microfluidic substrate so that the contact between the microfluidic substrate and the deformable end portion produces a substantially fluid-tight seal between the outlet aperture of the microfluidic substrate and the inlet of the emitter assembly.
Abstract:
A method of analyzing samples includes loading a sufficient quantity of the sample onto a trap column to overload the trap column; heating an analytical column and the trap column to a greater temperature than the analytical column; and pumping a solvent, to the trap column, having a solvent composition profile that, in cooperation with a temperature differential, causes at least some of the components to elute sequentially from the trap column to the analytical column and focus on the analytical column prior to eluting from the analytical column; or optionally: loading a small-molecule sample onto a cooled portion of an analytical column; heating the analytical column; and pumping a solvent, to the heated analytical column, to elute the components from the analytical column. Chromatographic separation includes: a trap column; a separation column; a trap-column heater; a separation-column heater; a solvent pump unit; and a control unit can be used.