Abstract:
A flame detection apparatus is provided that provides low cost fire detection with improved false alarm discrimination and that includes at least two optical sensors, each configured with a Long Wave Pass IR filter with distinct minimum responsive wavelengths and arrayed to broadly sample the MWIR band.
Abstract:
Se proporciona un aparato de detección de flama que proporciona una detección de fuego a bajo costo con discriminación mejorada de falsa alarma y que incluye por lo menos dos sensores ópticos, cada uno configurado con un filtro IR de Paso de Onda Larga con longitudes de onda sensibles mínimas distintas y dispuestas para muestrear ampliamente la banda de MWIR.
Abstract:
A flame detection apparatus is provided that provides low cost fire detection with improved false alarm discrimination and that includes at least two optical sensors, each configured with a Long Wave Pass IR filter with distinct minimum responsive wavelengths and arrayed to broadly sample the MWIR band.
Abstract:
Se divulga un polarímetro de imagen de infrarrojo de onda larga (LWIP) que incluye un arreglo de polarización pixelado (PPA) a corta distancia de un arreglo de plano focal de microbolómetro (MFPA), junto con un motor de alineación para alinear y unir el PPA y el MFPA y el método para el montaje.
Abstract:
A flame detection apparatus is provided that provides low cost fire detection with improved false alarm discrimination and that includes at least two optical sensors, each configured with a Long Wave Pass IR filter with distinct minimum responsive wavelengths and arrayed to broadly sample the MWIR band.
Abstract:
A system for determining a new orientation and/or position of an object comprises a sky polarimeter configured to record image data of the sky, a signal processing unit, and logic configured to receive and store in memory the image data received from the sky polarimeter. The logic calculates the Stokes parameters (S 0 , S 1 , S 2 ,), DoLP, and AoP from the image data, detects obscurants and filters the obscurants (such as clouds and trees) from the image data to produce a filtered image. The logic is further configured to find the Sun and zenith in the filtered image, and to determine the roll, pitch, yaw, latitude and longitude of the object using the filtered image. A method for determining a new position/orientation of an object comprises recording raw image data using a sky polarimeter, calculating S 0 , S 1 , S 2 , DoLP, and AoP from the image data, detecting obscurants and filtering the obscurants from the image data to produce a filtered image, obtaining last known position/orientation data of the object, finding the Sun and zenith in the filtered image, and determining the roll, pitch, yaw, latitude and longitude of the object using the filtered image.
Abstract:
A method for enhancing an image for facial recognition comprises capturing an image of the face with a polarizer and correcting the polarized image for non-uniformity. Stokes Parameters S 0 , S 1 , S 2 are obtained by weighted subtraction of the polarized image to form Stokes images. DoLP is computed from the Stokes images, and facial recognition algorithms are applied to the DoLP image. A system for enhancing images for facial recognition comprises a polarimeter configured to record polarized image data of a subject's face, a signal processing unit and logic configured to receive and store in memory the image data from the polarimeter, calculate Stokes parameters from the image data, and compute a DoLP image from the Stokes parameters.
Abstract:
A smoke producing method and device of the present disclosure produces a non-incendiary, organic-polymerization based, smoke-producing reaction. The method of generating smoke comprises initiating a frontal polymerization reaction by heating a composition comprising a monomer compound that exothermically polymerizes upon initiation with an initiator compound and an initiator compound that initiates polymerization of the monomer compound present at a mass concentration that is at least five percent of the mass concentration of the monomer compound. The polymerization of the monomer compound is exothermic, and in one embodiment the concentration of initiator compound is at least five percent of the concentration of monomer compound. The smoke mainly comprises thermal decomposition products of the initiator compound.