Abstract:
A process for treating acidic process waste water containing SiF.sub.6.sup.2- is disclosed. The process is carried out by contacting the waste water with a strong base ion exchange resin and loading SiF.sub.6.sup.2- onto the resin. Phosphate ions are then removed from the waste water by raising the pH of the waste water to between about 5.0 and 7.0 and contacting the waste water with a strong base ion exchange resin and loading phosphate ions onto the resin.
Abstract:
The invention relates to a method for separating nitrate from waters containing a significant amount of sulfate ion. Nitrate removal is accomplished by passing the water to be treated through a bed of a strong-base anion exchange resin which is a tributyl amine derivative of a copolymer exemplified by styrene-divinyl benzene. The tributyl species has been found to have an unusually high selectivity for nitrate over sulfate and provides not only a high capacity for nitrate removal but also economies in regeneration due to the ability to operate with only a partially regenerated resin bed.
Abstract:
An ion exchange resin bed capable of hydraulic segregation into discrete zones of ion exchange resins having different ion exchange functionalities, the resins being produced by functionalizing fractions of a single batch or lot of precursor copolymer which have been segregated on the basis of differing hydraulic densities of the different sized particles, and the method for producing the same.
Abstract:
This invention relates to the purification of industrial effluents containing cyanide ions, and cyanide precursors like acetone-cyanohydrin. More particularly, the invention relates to the purification of such effluents by utilizing a complexing compound followed by treatment with an anion exchange resin and optionally cation exchange resin to remove the cyanide complexes. The cyanide values are recovered from the resin by acid regeneration.
Abstract:
Ca ion is removed by a cation exchange resin and silica and corrosive ions are removed by an anion exchange resin. Even after the anion exchange resin reaches the silica break through point or after the cation exchange resin reaches the Ca ion break through point, the supply of water is continued until the average of silica concentration or Ca ion concentration reaches a predetermined value. By supplying both treated water before the break through point and treated water after the break through point, water containing silica or Ca ion of suitable concentration can be supplied to the water system with only one anion exchange column or cation exchange column.
Abstract:
A process for removing thiocyanate and other anions from Type II strong base anion exchange resins with an alkali metal hydroxide is disclosed. The process is particularly beneficial to the regeneration and/or reclamation of alkanolamine solutions laden with heat stable salts, especially thiocyanate.
Abstract:
In the process for purifying an aqueous MDEA-solution the formate content of the MDEA-solution circulated in a main stream between the absorber and desorber of a hydrogen sulfide wash unit for gas produced by gasification of a carbonaceous material, e.g. coal, is measured. A partial stream of MDEA-solution is withdrawn from the main stream, passed over an ion exchange medium which removes some formate present to form a partially purified partial stream and subsequently the purified partial stream is returned to the main stream. The amount of the withdrawal from the main stream is controlled so that the formate content of the main stream is maintained between 10 and 30 g/l. Only from 0.5 to 0.08% by volume need be withdrawn from the main stream to form the partial stream. The ion exchange medium can be regenerated with a hydroxide-containing solution, which is subsequently fed to an ammonia separator column of a hydrogen sulfide wash apparatus.
Abstract:
Acids contaminated with multi-valent metal salts are purified by a process which involves treatment in an acid sorption unit (ASU) and a nanofiltration unit (NFU). The feed solution can first be delivered to the ASU, which produces two solutions, one high in acid concentration and the other high in metal salt concentration. The high acid concentration solution can be treated in the NFU to produce an acid end product and a reject metal salt solution which can be recirculated to the feed of the NFU. Alternatively, the high metal salt solution can be treated in the NFU, and its permeate recirculated to the ASU as eluate. In an alternative configuration, the feed is delivered first to the NFU. In all cases, the membrane reject solution from the NFU is recirculated to increase the metal salt concentration. A second NFU can be used to process the solution from the ASU which contains a high metal salt concentration.
Abstract:
A method for demineralizing water or an aqueous solution, which comprises contacting the water or the aqueous solution to be treated to a strongly basic anion exchanger made of a crosslinked polymer having a constituting unit of the following formula (I): ##STR1## wherein A is a C.sub.1-2 linear alkylene group, B is a C.sub.4-8 linear alkylene group, each of R1, R2 and R3 which may be the same or different, is a C.sub.1-4 alkyl group or a C.sub.2-4 alkanol group, X is a counter ion coordinated on the ammonium group, and the benzene ring D may have an alkyl group or a halogen atom as a substituent.
Abstract:
The present invention includes a process for rejuvenating a spent aqueous alkanolamine solution comprising use of alkyl-substituted ammonium-containing organic base treatment to remove inorganic ions.