Abstract:
A device for coating semiconductor/semiconductor precursor particles on a flexible substrate and a preparation method of a semiconducting thin film, wherein the device includes: a container for a first and second solvent substantially immiscible; injection means for injecting a predetermined dispersion volume of at least one layered semiconductor particle material or its precursor(s), occurring at a liquid-liquid interface formed within the container and between the first and second solvent, and creating a particle film at the liquid-liquid interface; a first support means; substrate extracting means; substrate supply means; compression means, reducing a distance between particles and push the film onto the substrate, wherein the compression means includes several pushing means mounted on a drive device, wherein at least two of the several pushing means are at least partially submerged in the second solvent during drive device rotation, and moved through the second solvent toward the first support means.
Abstract:
A film formation system and a film formation method are disclosed. The film formation method includes the following steps performed in the film formation system that includes a container containing liquid, a water draining means for draining the liquid, a ring-shaped component installed in the container, and a carrying component installed in the liquid in the container for carrying at least a substrate: enabling the carrying component in the liquid and enabling the ring-shaped component to float on the liquid; when a film layer that is composed of nano-spheres is formed on the liquid, locating the film layer in a ring of the ring-shaped component; and removing the liquid, allowing the film layer to move downward in accordance with the ring-shaped component and be formed on the substrate, thereby preventing the nano-spheres from contacting an inner wall of the container and bursting, through the installation of the ring-shaped component.
Abstract:
An apparatus and process for producing organic monomolecular or multilayer films continuously comprises a tank having a spreading region (S) for spreading a material to form a monomolecular film, a compression region (C) for compressing the material on the liquid surface to form the monomolecular film and a deposition region (D) where the monomolecular film is deposited on a substrate. Means is provided to cause liquid to flow continuously from the spreading region to the deposition region through the compression region. A first control means is provided to maintain the liquid level in the deposition region D at a predetermined level. A second control means is provided for regulating the surface pressure of the monomolecular film at a predetermined value. Fluid flow through the apparatus is regulated so that the thickness of the liquid flow in the region C is less than thickness of the liquid flow in the regions S and D, and a decoupling region DS is provided between the region S and the region C. The provision of the decoupling region DS permits more stable film production.
Abstract:
An LB film forming device according to the present invention having a packing control device by which a barrier is moved under the control of the packing control device to compress a sample until the sample spreading over the surface of a subphase liquid provides a predetermined set surface pressure, the absorbance of the thus compressed sample is measured, and thereafter the barrier is moved under the control of the absorbance as desired so as to provide a predetermined set value of the absorbance. Such an LB film forming device may stably provide a film having predetermined film characteristics.
Abstract:
A barrier mechanism for isolating a drive chain from an active chamber in a Langmuir trough is provided. The chain drives a substrate mounted on a backing plate through the active chamber in order to coat the substrate. The chain passes through a "C" shaped barrier adjacent to the active chamber. The barrier mechanism comprises a resilient strip biased by a leaf spring to seal a side opening in the barrier. A wedge is mounted to the backing plate to open the resilient strip and leaf spring and thereby permit the backing plate to pass through the side opening as the substrate is driven into the active chamber.
Abstract:
A method is disclosed which uses the Langmuir-Blodgett method to coat a substrate with multiple monomolecular single layers by immersing the substrate through a first layer of a first enclosure of a tank having first and second enclosures on a common subphase, and then withdrawing the substrate through a second layer in the second enclosure. The steps are repeatable to provide as many different single layers as required.
Abstract:
An apparatus for forming thin organic films includes a plurality of water tanks each containing water. Monomolecular films of different amphiphatic organic molecules are developed on the surface of the liquid in water tanks, respectively. A work is dipped into and drawn up from a desired water tank, by a driving device, in a direction substantially perpendicular to the liquid surface, so that the monomolecular film in the water tank is adhered on a work surface. The work is transported by a transporting device to a position above another water tank, through an area lying above the water tanks. Then, the work is dipped into and drawn up from the other water tank, by the driving device, in a direction substantially perpendicular to the monomolecular film, so that another monomolecular film is adhered on the monomolecular film already formed on the work surface.
Abstract:
A barrier for confining an area of monomolecular film on a Langmuir trough comprises a first barrier portion consisting of a transverse part and a longitudinal part and a second barrier portion connected at its ends to the ends of the first barrier portion and having two further longitudinal parts, one close to the first longitudinal part and the other further away. By altering the position of another transverse part joining the two further longitudinal parts the area enclosed is varied by changing the length of the longitudinal part close to the first longitudinal part and altering the length of the longitudinal part further away by an amount such that the sum of the two altered lengths remains constant.
Abstract:
The monomolecular layer is first formed from a solution of amphiphilic molecules by introduction of the solution on a liquid surface which is divided into at least two compartments by at least one rotatable and partly immersed horizontal member. The solvent is then removed and the horizontal member is driven in rotation so as to apply a predetermined pressure to said layer as this latter is transferred from one compartment to the next, the layer being finally deposited on a substrate.