Abstract:
Devices, methods and computer programs for elevator call allocation with stochastic multi-objective optimization are disclosed. At least some of the disclosed embodiments allow an elevator group control to take into account knowledge about possible future passenger arrivals when allocating new calls. At the same time, the new elevator calls can be allocated via optimizing multiple objectives, such as the waiting time, the time to destination, and/or the energy consumption. In other words, the invention makes it possible to both take into account the uncertainty related to future passengers and control the trade-off between different optimization objectives.
Abstract:
According to an example embodiment there is provided a method for allocating an elevator in an elevator system. The method comprises constructing passenger batch size distributions for each pair of floors in a building based on passenger batch journeys, each passenger batch journey defining at least the origin and destination floor of the journey, the number of passengers relating to the journey and the time of the journey; receiving a call for an elevator; estimating the number of passengers waiting behind the call based on the passenger batch size distributions; and allocating the call to an elevator being able to serve the estimated number of passengers.
Abstract:
The invention relates to a method for controlling a passenger transport system, which transport system comprises at least two passenger conveyors, as e.g. escalators or elevators, which transport system comprises a control for the passenger conveyors and for controlling passenger flow in the transport system. The control is connected to a passenger flow determination device for establishing a passenger flow reference value of the actual passenger flow to be expected in the passenger transport system, and which control further comprises a passenger guide system for controlling passenger flow in the transport system, which passenger guide system uses a cost function considering a set of system control parameters as passenger riding time, energy consumption, passenger waiting time, passenger transport capacity, maintenance demand, etc. The control uses a transport model simulating the function of the hardware components of the transport system under consideration of correlated system operating parameters as e.g. number of active passenger conveyors, passenger conveyor speed, still-stand times, door opening times etc. in connection with passenger flow,whereby the passenger flow reference value is input to the transport model and in an optimization process the system operating parameters are optimized under use of the transport model to meet the passenger flow reference value under consideration of at least one significant system control parameter from said set of system control parameters to achieve a best set of system operating parameters. The best set of system operating parameters is applied to the control of the passenger transport system.
Abstract:
An exemplary method of assigning calls to elevator cars includes ensuring that a passenger separation requirement is satisfied. The passenger separation requirement is satisfied when a passenger belonging to one service group is not carried in the same elevator car simultaneously with another passenger belonging to a different service group, for example. A call is assigned to an elevator car to carry a passenger belonging to the one service group while the elevator car is assigned to carry or is already carrying another passenger belonging to the different service group.
Abstract:
Using a position detection device, a position of a user in a building area outside of an elevator system is detected. It is determined, after the user has entered an elevator car, that the user is not authorized to travel to a destination floor designated by a destination for the user. As a result of the determination, the elevator car is moved to an area other than the destination floor.
Abstract:
An elevator system which utilizes a plurality of independently moving cabs in each elevator shaft. The lower cabs are connected to spatially separated counterweights in order to prevent interference between cables, pulleys and counterweights. The top cab may be connected to one or two counterweights by connection points on the roof of the cab. The cabs are mounted on tracks, to guide each cab through the elevator shaft. The system includes a motor attached to each of the cabs by lift cables to facilitate the independent movement of all cabs. Existing buildings can be retrofit for compatibility with the present invention. A system and method for controlling the motions of all cabs comprising determining and selecting an optimal cab and a best hoistway range to service passenger requests.
Abstract:
Using a position detection device, a position of a person in a building area outside of an elevator system is detected. It is determined that the person has not actuated a destination call for the elevator system within a preset period of time. As a result of the determination, a security measure is activated.
Abstract:
A method of operating an elevator installation for transporting elevator users in a building area, including the steps of: detecting the position of elevator users in the building area, granting of an access authorization of the elevator users to building regions, triggering of a destination call by a detected elevator user, allocation of an elevator car serving the destination call or elevator call, boarding of an elevator car by at least one detected elevator user, if an elevator call was triggered triggering a car call by a detected elevator user, comparing whether the position of the elevator user that has boarded the elevator car corresponds with the position of the elevator user that has triggered the destination call, and determining whether the elevator user that has boarded the elevator car has an access authorization for a destination location corresponding with the destination call or elevator call.
Abstract:
A method of operating an elevator installation for transporting elevator users in a building area, comprising the steps: detecting the position of elevator users in the building area, granting of an access authorization of the elevator users to building regions, triggering of a destination call by a detected elevator user, allocation of an elevator car serving the destination call or elevator call, boarding of an elevator car by at least one detected elevator user, if an elevator call was triggered triggering a car call by a detected elevator user, comparing whether the position of the elevator user that has boarded the elevator car corresponds with the position of the elevator user that has triggered the destination call, and determining whether the elevator user that has boarded the elevator car has an access authorization for a destination location corresponding with the destination call or elevator call.