Abstract:
Es wird von einem Verfahren zur Verbrennung von brennbarem Abfallstoff in einer Brennkammer ausgegangen, bei dem der Abfallstoff einer Brennerflamme zugeführt und darin mit Verbrennungsluft bei einer Temperatur im Bereich zwischen 1100°C und 1700°C verbrannt wird. Um hiervon ausgehend Verfahren zur Verfügung zu stellen, das eine Kapazitätserhöhung von Anlagen zur exothermen Verbrennung von Abfallstoffen erlaubt, wird erfindungsgemäß vorgeschlagen, dass mindestens ein Teil der Verbrennungsluft durch ein sauerstoffreiches Gas mit einem gegenüber Luft erhöhten Sauerstoffgehalt ersetzt wird, und dass das sauerstoffreiche Gas mit einem Kühlmedium vermischt wird.
Abstract:
Das Verfahren und die Vorrichtung zur Durchführung des Verfahrens betreffen die Verbrennung von Müll, der unter Zufuhr von Wärme vorgetrocknet und danach unter Abkühlung und Anwendung von Unterdruck vollständig enttrocknet und entgast wird. Bei der Verbrennung wird unter Zufuhr von Sauerstoff bei zusätzlicher Energiegewinnung die Schlacke in einen Schlackenbart gesammelt und bei Bedarf gegebenenfalls unter Zuführung von Zuschlägen zu Schlackenprodukten verarbeitet. Die Müllverbrennung geschieht in einem Topf- oder Schalenbrenner, wobei die entstehenden Brenngase zur Dampferzeugung mittels eines im Brennraum angeordneten Verdampfers herangezogen werden.
Abstract:
A system and method to prevent the oxidizer overheating using cold side bypass during high input for a VOCs treatment system with series rotor are described, which may be used in an organic waste air treatment system. The system is equipped with a Thermal Oxidizer (TO), a First Heat Exchanger, a Second Heat Exchanger, a third heat exchanger, a Fourth Heat Exchanger, a First Cold-Side Transporting Pipeline, a Fourth Cold-Side Transporting Pipeline, a First Adsorption Rotor, a Second Adsorption Rotor, and a Chimney. There is a Cold-Side Proportional Damper installed between the First Desorption-Treated Air Pipeline and the First Cold-Side Transporting Pipeline, the First Desorption-Treated Air Pipeline and the Fourth Cold-Side Transporting Pipeline or between the First Cold-Side Transporting Pipeline and the Fourth Cold-Side Transporting Pipeline, or the damper is installed on the First Desorption-Treated Air Pipeline.
Abstract:
The disclosure relates to preventing an oxidizer from overheating using cold side bypass during high input for a VOCs treatment system having a series rotor, which may be used in an organic waste air treatment system. The system includes a thermal oxidizer (TO), a first heat exchanger, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, a first cold-side transporting pipeline, a fourth cold-side transporting pipeline, a first adsorption rotor, a second adsorption rotor, and a chimney. A cold-side proportional damper is installed between the first desorption-treated air pipeline and the first cold-side transporting pipeline, between the first desorption-treated air pipeline and the fourth cold-side transporting pipeline, or between the first cold-side transporting pipeline and the fourth cold-side transporting pipeline, or the damper is installed on the first desorption-treated air pipeline.
Abstract:
An energy product made from biomass, and a method of making an energy product from biomass. The energy product is made by processing biomass in a pressurizable reaction vessel with heat, pressure and agitation.
Abstract:
The starting point is a process to improve the performance of the incineration of combustible waste material in an incineration chamber, whereby the waste material is conveyed to a burner flame where it is burned with combustion air at a temperature in the range from 1100null C. to 1700null C. null2012null F. to 3092null F.null. On this basis, in order to create a process that allows a capacity increase of installations employed for the exothermal incineration of waste materials, it is proposed according to the invention that at least part of the combustion air is replaced by an oxygen-rich gas having an oxygen content that is higher than that of air and that the oxygen-rich gas is mixed with a cooling medium.
Abstract:
Dumped solid waste is mixed with sand and fed through a shredder. Sorters sort aluminum glass and ferrous materials from the shredded waste, and an indirect fired dryer heats the remaining shredded waste. Dust in gases from the dryer is removed in a bag house. Sand is added to the dried, shredded waste, and the waste is cooled and stored in surge storage. The shredded, dried, cooled and stored waste is fed to one or more reducing chamber units. Waste is moved through individual chambers within the units with augers and is gravitationally fed between the chambers. Gases from the chambers are condensed, and the condensate is stored as oils. Solid products from the reducing chamber units are cooled. The sand is separated from the solid product. The resultant solid product and oils may be sold as fuel and feedstock, or the resultant product may be pulverized and combined with the oil in a slurry which is used as a fuel or a feedstock.
Abstract:
Waste treatment. The installation for implementing the method comprises: a furnace (1) defining a confinement enclosure (2) for a fluidized bed (3) of particulate matter; means for recirculating the particles of the bed; means (28) for mixing, coating, and drying the recycled particles and the waste; and means for feeding the furnace from the means (28). The invention is applicable to treating moist waste.
Abstract:
A method for processing electric storage batteries, particularly lithium/thionyl chloride batteries, which includes the steps of discharging the batteries, lowering the temperature of the battery components to -180.degree. C., and cutting the battery into pieces while in its cold state before further processing. The process can also include the further steps of incineration, collecting the solid, liquid and gaseous discharges from the incinerator, washing the solid and liquid discharges with water and the gaseous discharge with an alkaline solution, mixing the resultant wash streams, separating precipitates formed from the mixed stream and neutralizing the remaining solution.
Abstract:
The present invention provides a method for processing wastes containing a large amount of water and a method for processing leachate from industrial wastes. Specifically, the present invention provides a method which comprises maintaining reduced pressure in the dryer equipped with a stirring means, feeding wastes containing a large amount of water to the dryer, stirring the wastes while blowing refrigerated air at -20.degree. C..+-.5.degree. C. to the dryer, and drying the frozen moisture portion of the wastes by sublimation. Air heated at 80.degree. C.+10.degree. C. can be used instead of refrigerated air to dry water of the wastes by evaporation. The present invention also provides a method for processing leachate which comprises pooling leachate industrial wastes and burned ashes, and utilizing the leachate to absorb wet-type toxic gas, thereby confining the leachate within the waste treatment plant. The present invention therefore make it possible to process wastes containing a large amount of water, which have been a problem in the incineration by the conventional methods, by using the potential heat of the waste gas from the incinerator. The present invention also provides an effective means to prevent environmental contamination because leachate is confined in the waste treatment plant.