Abstract:
A hydraulic network (1) having plural parallel zones (Z1, Z2) with a regulating valve (V1, V2) in each zone for regulating a flow of fluid (φ1, φ2) through respective zones. Characteristic parameters of the hydraulic network (1) include static flow capacity values (Kex,a, Kex,b) of the zones. Measurement data sets are recorded which include a determined value of a hydraulic system variable of the hydraulic network (1), e.g. the total flow (φtot) or the system pressure (ΔP), and valve positions of the regulating valves (V1, V2) set for the determined value of the hydraulic system variable. The characteristic parameters are calculated from plural measurement data sets, by grouping related measurement data sets, which include the same value of the hydraulic system variable but different valve positions, and by using the flow capacity (Kvalve,a, Kvalve,b) of the regulating valves (V1, V2) at the valve positions included in the data sets.
Abstract:
The present invention relates to a method of controlling pressure maintenance equipment for a cooling and heating system. More particularly, the present invention relates to a method of operating and controlling, under optimum conditions, pressure maintenance equipment with multiple sensors so as to check for irregularities in the sensors which measure the same physical parameter. In the present invention, measurement values of two or more sensors are used to detect whether an abnormality has occurred in any sensor. If a sensor is determined to be abnormal, a measurement value of the abnormal sensor is excluded when determining a reference control value. Thereby, the pressure can be precisely and reliably controlled in response to actual conditions of the system.