Abstract:
PURPOSE: A diffraction grating spectrometer is provided to improve resolving power even if a diffraction grating with a small size is used by expanding diffracted light using an intensity division/wavefront recombination unit. CONSTITUTION: A diffraction grating spectrometer comprises an intensity division/wavefront recombination unit(3). The intensity division/wavefront recombination unit comprises a semitransparent mirror(31) and a total reflection mirror(32). The semitransparent mirror reflects a part of a beam diffracted by a diffraction grating(2) and penetrates the other part of the beam. The total reflection mirror locates the wavefront of the reflected beam at the same phase as the wavefront of the penetrated beam. The total reflection mirror re-combines the wavefronts of the reflected and penetrated beam and expands the re-combined wavefront of the beam.
Abstract:
PURPOSE: A wavelength detecting apparatus and a focus detecting apparatus with the same are provided to accurately focus a subject even though a wavelength component of a light source which illuminates a subject is largely deviated from a wavelength corresponding to green sensitive to eyes of a person. CONSTITUTION: A light splitting unit(410) splits light according to a wavelength. An imaging lens(420) images light split by the light splitting unit on a sensor unit. A wavelength calculating unit(440) calculates a main wavelength of light entering a photographing apparatus according to wavelength distribution sensed by the sensor unit. The light split by the light splitting unit is successively imaged on the sensor unit according to a wavelength.
Abstract:
PURPOSE: A optical system for simultaneous detecting calibration system and test signal in optical spectrum analyzer are provided to supply a concurrent calibration signal and detect a test signal in an optical spectrum analyzer that is useful in analyzing optical telecommunications transmission lines. CONSTITUTION: The optical system(10) has a collimating optic(12), an optical axis(14), and a focal plane(16). A fiber array(18) has first and second pairs of optical fibers(22,24) with each optical fiber pair having an input optical fiber(26,28) and an output optical fiber(30,32). The input optical fiber(26) of the first pair of fibers(22) is coupled to receive the optical signal under test(34). The output optical fiber(30) of the pair is coupled to test signal detector(36). The input optical fiber(28) of the second pair of fibers(24) is connected to an optical calibration source(38) that produces a spectral output in response to shifts in emission or absorption energy levels in atomic or molecular species. The output optic fiber(32) of the pair is coupled to a calibration source detector(40). An optical tuning element drive motor(44) is connected to the optical tuning element(42) to tune the optical system(10) through the spectral range.
Abstract:
본 발명은 반도체 웨이퍼로부터 분리되는 반도체 바 상의 복수의 외부 캐비티 반도체 레이저 칩들을 자동으로 특성화 처리하는 시스템 및 방법에 관한 것이다. 상기 시스템은 회절 각도 범위를 통해 회절 격자를 회전시키는 회전 스테이지 상에 장착된 회절 격자; 회절 격자의 표면과 수직으로 배향되고 회전 스테이지 상에 장착된 조정 미러; 레이저 분석기; 및 레이저 바 위치 선정 스테이지를 포함한다. 위치 선정 스테이지는 상기 스테이지 상의 레이저 바의 레이저 칩 각각을 한번에 한 칩씩 회절 격자와 정렬시키기 위해 자동으로 이동하고, 그 결과, 레이저 바의 레이저 칩으로부터 발광된 레이저 빔의 일부는 레이저 방출을 잠그기 위해 격자의 제 1 차 회절에 의해 동일한 레이저 칩으로 다시 반사되고, 조정 미러에 의해 반사된 나머지 레이저 빔은 레이저 분석기에 의해 수신되고 특성화 처리된다. 각각의 레이저 운송에 있어서, 회전 스테이지는 레이저 칩에 의해 방출된 레이저 빔에 대해 회절 각도 범위를 통하여 회절 격자를 회전시키기 위해 자동으로 회전되고, 레이저 분석기는 스펙트럼, 파워 또는 공간 모드 등의 레이저 광학 속성을 각각의 회절 각도에서 자동으로 특성화 처리한다.
Abstract:
PURPOSE: A spectral device, a detecting device and a manufacturing method of the spectral device are provided to improve wavelength resolution and diffraction efficiency. CONSTITUTION: A spectral device comprises a transmission diffraction grating. The incident light is transmitted in the transmission diffraction grating. The transmission diffraction grating has inclines(140,150). The incline is formed with a first dielectric body. The incline is tilted based on a reference line(130). When the incident angle of the incident light to the transmission diffraction grating is angle-a about a reference line, and the diffraction angle of the diffracted light is an angle-β about the reference line, the incident angle-α is smaller than an bragg angle-θ about an incline, and the incident angle-β is bigger than the angle-θ about an incline.