Stable metallization for electronic and electromechanical devices
    31.
    发明授权
    Stable metallization for electronic and electromechanical devices 有权
    电子和机电设备的稳定金属化

    公开(公告)号:US06173612B1

    公开(公告)日:2001-01-16

    申请号:US09187288

    申请日:1998-11-05

    CPC classification number: G01P15/097 G01L1/183 G01P15/0802 G01P2015/0828

    Abstract: Described are various improved methods of forming electronic devices, electro-mechanical devices, force-sensing devices, and accelerometers. Also described are various improved electronic devices, electro-mechanical devices, force-sensing devices, and accelerometers. The device comprises a plurality of vibrating beams joined with a support portion and configured for movement relative to the support portion. A layer of electrically conductive material is disposed over at least some of the surface of the moveable portion and support portion, the layer comprising an inert or a noble material having a Young's modulus which is greater than that of elemental gold. Alternatively, the layer may comprise an inert material having a coefficient of expansion which is less than that of elemental gold.

    Abstract translation: 描述了形成电子装置,机电装置,力感测装置和加速度计的各种改进的方法。 还描述了各种改进的电子设备,机电装置,力感测装置和加速度计。 该装置包括多个与支撑部分结合的振动梁,并被配置为相对于支撑部分移动。 一层导电材料设置在可移动部分和支撑部分的至少一些表面上,该层包括具有大于元素金的杨氏模量的惰性或贵金属。 或者,该层可以包括具有小于元素金的膨胀系数的惰性材料。

    Transducer having a resonating silicon beam and method for forming same

    公开(公告)号:US5834333A

    公开(公告)日:1998-11-10

    申请号:US957401

    申请日:1997-10-23

    CPC classification number: G01P15/0802 G01L1/183 G01L9/0019 G01L9/0045

    Abstract: A method of forming apparatus including a force transducer on a silicon substrate having an upper surface, the silicon substrate including a dopant of one of the n-type or the p-type, the force transducer including a cavity having spaced end walls and a beam supported in the cavity, the beam extending between the end walls of the cavity, the method including the steps of: (a) implanting in the substrate a layer of a dopant of said one of the n-type or the p-type; (b) depositing an epitaxial layer on the upper surface of the substrate, the epitaxial layer including a dopant of the other of the n-type or the p-type; (c) implanting a pair of spaced sinkers through the epitaxial layer and into electrical connection with said layer, each of the sinkers including a dopant of the one of the n-type or the p-type; (d) anodizing the substrate to form porous silicon of the sinkers and the layer; (e) oxidizing the porous silicon to form silicon dioxide; and (f) etching the silicon dioxide to form the cavity and beam.

    Polysilicon resonating beam transducers
    33.
    发明授权
    Polysilicon resonating beam transducers 失效
    多晶硅共振光束传感器

    公开(公告)号:US5090254A

    公开(公告)日:1992-02-25

    申请号:US508001

    申请日:1990-04-11

    Abstract: Force transducers are formed of a beam of polysilicon which is mounted at its ends to a silicon substrate and is encapsulated within a polysilicon shell which defines, with the substrate, a cavity around the resonating beam. The cavity is sealed off from the atmosphere and evacuated to maximize the Q of the resonating beam. The beam is produced by deposition of polysilicon in such a way that, combined with subsequent annealing steps, the beam is in zero or low tensile strain. Resonant excitation of the beam may be accomplished in various ways, including capacitive excitation, and the vibratory motion of the beam may be detected utilizing an implanted resistor which is piezoresistive. Formation of the beam is carried out by depositing the beam on a sacrificial layer and surrounding it in a second sacrificial layer before the encapsulating polysilicon shell is formed. The sacrificial layers are etched out with liquid etchant which passes through channels in the periphery of the shell. Following etching, the interior of the cavity surrounding the beam is maintained in a wash liquid so that the beam is not deflected toward any of the adjacent surfaces, and the wash liquid is removed by freezing and sublimation. The interior surfaces of the cavity and the outer surfaces of the beam are passivated and the channels leading into the cavity may be sealed by oxidation in an oxidizing atmosphere, which also results in consumption of oxygen within the cavity.

    物理量センサ
    34.
    发明申请
    物理量センサ 审中-公开
    物理量传感器

    公开(公告)号:WO2010109787A1

    公开(公告)日:2010-09-30

    申请号:PCT/JP2010/001588

    申请日:2010-03-08

    CPC classification number: G01L1/183

    Abstract:  物理量センサは、応力により歪が発生する起歪体と、その歪に応じた周波数でまたはその歪に応じた振幅で振動する振動子と、振動子から出力される信号を処理する処理回路とを備える。振動子は、その歪が伝達するように起歪体に配置されている。処理回路は、その歪が実質的に伝達されないように起歪体に結合する。この物理量センサは、物体に働く歪や張力を安定に検出することができる。

    Abstract translation: 物理量传感器设置有通过应力产生应变的应变发生体,以与应变或对应于应变的振幅相对应的频率振动的振动器,以及处理从振动器输出的信号的处理电路。 振动器设置在应变发生体上,使得应变传递到应变发生体上。 处理电路连接到应变发生体,使得该应变基本上不传递到该应变发生体。 物理量传感器可以稳定地检测作用在物体上的应变和张力。

    DIELECTRICALLY ISOLATED RESONANT MICROSENSORS
    35.
    发明申请
    DIELECTRICALLY ISOLATED RESONANT MICROSENSORS 审中-公开
    电介质隔离型MICROSENSORS

    公开(公告)号:WO9504265A3

    公开(公告)日:1995-08-03

    申请号:PCT/US9408258

    申请日:1994-07-22

    Applicant: HONEYWELL INC

    Inventor: BURNS DAVID W

    Abstract: A resonant strain gauge includes a silicon substrate, a polysilicon flexure beam fixed at both ends relative to the substrate, and a polysilicon rigid cover cooperating with the substrate to enclose the flexure beam within a sealed vacuum chamber. An upper bias electrode is formed on the cover, and a lower bias electrode is formed at the bottom of a trough in the substrate directly beneath the flexure beam. A drive electrode and a piezoresistive element are supported by the beam, formed over a silicon nitride thin film layer deposited onto the top surface of the flexure beam. A second silicon nitride layer covers the drive electrode and piezoresistor, cooperating with the first silicon nitride layer to dielectrically encapsulate the drive electrode and piezoresistor. The silicon nitride further extends outwardly of the beam to a location between the polysilicon layer that contains the beam, and the cover, to isolate the cover from the flexure beam. A polysilicon film is applied over the upper silicon nitride layer as a passivation layer to protect the silicon nitride during gauge fabrication. The process for fabricating the gauge includes a sequence of applying the various polysilicon and silicon nitride layers by low pressure chemical vapor deposition, in combination with selective etching to define the flexure beam, electric circuit components and vacuum chamber.

    RESONANT GAUGE WITH MICROBEAM DRIVEN IN CONSTANT ELECTRIC FIELD
    36.
    发明申请
    RESONANT GAUGE WITH MICROBEAM DRIVEN IN CONSTANT ELECTRIC FIELD 审中-公开
    在恒定电场中驱动微波的谐振仪

    公开(公告)号:WO1995007448A1

    公开(公告)日:1995-03-16

    申请号:PCT/US1993008404

    申请日:1993-09-07

    Applicant: HONEYWELL INC.

    CPC classification number: G01P15/097 G01B7/16 G01L1/183 G01L9/0019 Y10S73/01

    Abstract: A resonant strain gauge includes a silicon substrate, a polysilicon flexure beam attached at both ends to the substrate, and a polysilicon rigid cover cooperating with the substrate to enclose the flexure beam within a sealed vacuum chamber. An upper bias electrode is formed on the cover, and a lower bias electrode is formed on the substrate directly beneath and spaced apart from the flexure beam. A drive electrode is formed in or on the beam, centrered between the upper and lower bias electrodes transversely with respect to the direction of beam elongation. The upper and lower electrodes are biased at constant voltage levels, of equal magnitude and opposite polarity. The drive electrode, ordinarily biased at ground, is selectively charged by applying an oscillating drive voltage, to cause mechanical oscillation of the beam. A piezoresistor element, formed on the beam, senses beam oscillation and provides a position indicating input to the oscillator circuit that drives the beam. The beam tends to oscillate at its natural resonant frequency. The piezoresistor thus provides the natural resonant frequency to the oscillating circuit, adjusting the frequency of the beam drive signal toward coincidence with the natural resonant frequency. A shield electrode can be formed on the flexure beam between the piezoresistor and the drive electrode, to insure against parasitic capacitance. In alternative embodiments, the drive signal is applied to one of the bias electrodes to oscillate the beam, and beam oscillation is sensed capacitively.

    Abstract translation: 共振应变计包括硅衬底,在两端附着到衬底的多晶硅弯曲梁和与衬底配合的多晶硅刚性盖,以将挠曲梁封闭在密封的真空室内。 在盖上形成上部偏置电极,并且在基板上直接形成下偏置电极,并且与弯曲梁间隔开。 驱动电极形成在梁上或梁上,相对于梁伸长方向横向上下偏置电极之间。 上电极和下电极以恒定的电压电平被偏置,具有相等的幅度和相反的极性。 通常施加在地面上的驱动电极通过施加振荡驱动电压来选择性地充电,以引起光束的机械振荡。 形成在光束上的压敏电阻元件感测光束振荡,并提供指示输入到驱动光束的振荡器电路的位置。 光束倾向于以其固有谐振频率振荡。 因此,压电晶体管向振荡电路提供固有谐振频率,从而将光束驱动信号的频率调整为与固有谐振频率一致。 可以在压敏电阻和驱动电极之间的挠曲束上形成屏蔽电极,以确保寄生电容。 在替代实施例中,将驱动信号施加到偏置电极之一以振荡该光束,并且电容地感测光束振荡。

    UNITARY PUSH-PULL FORCE TRANSDUCER
    37.
    发明申请
    UNITARY PUSH-PULL FORCE TRANSDUCER 审中-公开
    单位推拉力传感器

    公开(公告)号:WO1990010207A1

    公开(公告)日:1990-09-07

    申请号:PCT/US1990000131

    申请日:1990-01-08

    Abstract: A push-pull force transducer comprising a unitary body (40) formed from a crystalline substrate. The body comprises first and second mounting elements (42, 44) for mounting the force transducer to first and second structures (72, 74), and first and second force sensing elements (46, 48) connected to the mounting elements. Each force sensing element has first and second ends, a line extending from the second to the first end defining a force sensing axis for the force sensing elements. The force sensing elements are oriented with their force sensing axes parallel to and aligned with one another. The first force sensing element has its first end connected to the second mounting element and its second end connected to the first mounting element. The second force sensing element has its first end connected to the first mounting element and its second end connected to the second mounting element. Also described are embodiments utilizing strain relief flexures and an embodiment featuring a leveraged design.

    CAPTEUR D'EFFORTS RESONANT MULTIDIMENSIONNEL
    38.
    发明申请
    CAPTEUR D'EFFORTS RESONANT MULTIDIMENSIONNEL 审中-公开
    多维谐振力传感器

    公开(公告)号:WO2016096341A1

    公开(公告)日:2016-06-23

    申请号:PCT/EP2015/077585

    申请日:2015-11-25

    CPC classification number: G01L5/167 G01L1/162 G01L1/183 G01L5/16

    Abstract: Le capteur résonant comporte un corps d'épreuve (10) apte à subir un torseur d'efforts produits par une structure mécanique externe, ledit corps (10) comportant au moins : - une première interface (2) et une deuxième interface (3) aptes chacune à entrer en contact avec ladite structure; - au moins deux zones sensibles (1) disposées chacune entre ces deux interfaces (2, 3); une zone sensible étant formée d'une plaque (21) encastrée dans un cadre (22) solidaire mécaniquement desdites interfaces, ladite plaque étant apte à entrer en résonance sous l'effet d'excitations mécaniques locales produites en des points particuliers par des transducteurs d'excitation portant ladite plaque à plusieurs fréquences de résonances, des capteurs captant les signaux résonant produits au niveau desdits points particuliers, des moyens de mesure mesurant les décalages de fréquences de résonance de signaux qui sont des combinaisons linéaires des signaux résonant captés, lesdits décalages étant fonction de contraintes mécaniques induites par lesdits efforts et transmises à ladite plaque (21) par ledit cadre (22), les composantes dudit torseur d'efforts étant déterminées à partir décalages de fréquences de résonance mesurés sur les plaques (21) desdites zones sensibles (1).

    Abstract translation: 谐振传感器包括能够经受由外部机械结构产生的力矩的测试体(10),所述主体(10)至少包括: - 第一接口(2)和第二接口(3),每个接头 与所述结构接触; - 每个布置在所述两个接口(2,3)之间的至少两个敏感区域(1); 一个敏感区域由嵌入在刚性地机械地连接到所述界面的框架(22)中的板(21)形成,所述板能够在由特定点产生的局部机械激励的作用下共振,所述激励换能器在几个位置上承载所述板 谐振频率,捕获谐振信号的传感器在所述特定点处产生,测量装置测量作为所捕获的共振信号的线性组合的信号的谐振频率偏移,所述偏移是由所述力引起的机械应力的函数,并被发送到 所述板(21)通过所述框架(22),所述转矩力的分量由在所述敏感区域(1)的板(21)上测量的谐振频率偏移确定。

    INTEGRATED RESONANT MICROBEAM SENSOR AND TRANSISTOR OSCILLATOR
    40.
    发明申请
    INTEGRATED RESONANT MICROBEAM SENSOR AND TRANSISTOR OSCILLATOR 审中-公开
    集成式谐振微波传感器和晶体振荡器

    公开(公告)号:WO1996018873A1

    公开(公告)日:1996-06-20

    申请号:PCT/US1995016441

    申请日:1995-12-15

    Applicant: HONEYWELL INC.

    CPC classification number: G01P15/097 G01L1/183 G01L9/0019

    Abstract: At least one microbeam situated on a substrate, having a resonant frequency dependent on the strain on the microbeam which may be affected by the bending of the substrate. The beam or beams have sense and drive electrodes proximate to the beam or beams and form capacitors with a beam being the other electrode. The capacitance varies as the beam moves in vibration. The sense electrode is connected to an input of a transistor, such as the gate or base, and the drive electrode is connected to an output of the transistor. The transistor has a load impedance with a capacitive component to aid in the sustaining of vibration of the beam at a resonant frequency. A high ohm resistor is connected between the gate and the drain of the transistor to appropriately bias the gate. The bending of the substrate may be caused by a magnitude of a physical stimulus being measured. However, the bending of the substrate is not utilized nor desired in the filter and temperature sensing configurations of the invention. The frequency of resonance is an indication of the magnitude of the physical parameter. Variants of the sensor may be implemented with different placements of the sense and drive electrodes, and additional electronics as needed to implement the various configurations and microbeam geometry. Additional sense and/or drive electrodes and beams also may be incorporated in the transistor resonant microbeam sensor.

    Abstract translation: 位于衬底上的至少一根微束,具有取决于微束上的应变的共振频率,其可能受到衬底的弯曲的影响。 光束或光束具有靠近光束或光束的感测和驱动电极,并形成具有作为另一电极的光束的电容器。 电容随着光束在振动中的移动而变化。 感测电极连接到诸如栅极或基底的晶体管的输入,并且驱动电极连接到晶体管的输出端。 晶体管具有具有电容分量的负载阻抗,以有助于以共振频率维持波束的振动。 一个高欧姆电阻连接在晶体管的栅极和漏极之间以适当地偏置栅极。 衬底的弯曲可以由被测量的物理刺激的大小引起。 然而,在本发明的过滤器和温度检测结构中,基板的弯曲不被利用或不期望。 谐振频率表示物理参数的大小。 传感器的变体可以通过感测和驱动电极的不同布置以及实现各种构造和微束几何形状所需的附加电子装置来实现。 附加的感测和/或驱动电极和光束也可以并入晶体管谐振微束传感器中。

Patent Agency Ranking