Abstract:
A system and procedure for the inspection of the surface of a semiconductor wafer (26) ascertains that particulate contaminants have been adequately cleaned from the surface during the manufacture of integrated electric circuits. The wafer is advanced in a first direction (30) and is optically scanned in a second direction, transverse to the first direction, for recording intensities of light reflected normally from the wafer surface as a function of location on the scan line. A high intensity reflection is indicative of a smooth flat surface suitable for inspection of particles by an integrating hemisphere (48) with plural photodetectors (50,52) therein. A weak reflection is indicative of undulations and patterned regions which are unfavorable for examination of particles on the wafer surface. A second scan is offset sideways to compensate for motion of the wafer so as to rescan the same line as the first scan. The photodetectors in the integrating sphere are gated on and off during the second scan at the locations of suitable inspection sites determined from the first scan.
Abstract:
An illumination system for recognizing material includes a measurement stage, a light-providing part, a light-receiving part, and a processing part. The measurement stage is upwardly open and the measurement target is located on the measurement stage. The light-providing part includes a plurality of illumination sections providing incident lights to the measurement target, and provides multi-directional incident lights to the measurement target from multiple upper directions at which the measurement stage is open. The light-receiving part receives single-directional reflection lights reflected by the measurement target according to the multi-directional incident lights provided by the light-providing part. The processing part acquires a multi-directional intensity distribution of multi-directional reflection lights reflected by the measurement target according to a single-directional incident light from the single-directional reflection lights reflected by the measurement target according to the multi-directional incident lights, and determines material of the measurement target from the multi-directional intensity distribution of reflection lights. Thus, material of an object may be easily and accurately known at a low cost.
Abstract:
A vision system useful in acquiring images includes: a light dome having a window and a perimeter; an annular light curtain positioned within and radially inwardly from the perimeter of the light dome such that an annular gap is formed between the light dome and the light curtain; and a light ring positioned to illuminate the gap between the light dome and the light curtain. The light curtain and window are sized and positioned such that no direct light from the light ring reaches the window. The system further comprises a camera having a lens facing the window to acquire images of an object on a side of the window opposite the camera. The images acquired by the camera can then be compared to stored images to determine whether the identity of the objects (which may be pharmaceutical tablets) is as expected.
Abstract:
A compact, optical measurement system has a non-flat detector array having multiple detector elements arranged on a flexible substrate in a monolithic fashion, one or more illumination sources arranged to provide more than one angle of incidence of light on a subject being measured, and a detection system in electrical communication with the detector array, the detection system arranged to receive inputs from the detector array and provide a measurement from the inputs. A method of measuring reflectance of a surface includes placing the surface adjacent a hemispherical detector array, illuminating the surface from a predetermined angle of incidence, simultaneously detecting reflectance at multiple emission angles using the hemispherical detector array, and repeating the illuminating and detecting processes at different angles of incidence. Optional arrays of lenses, baffles and filters may be employed by the system.
Abstract:
A vision system useful in acquiring images includes: a light dome having a window and a perimeter; an annular light curtain positioned within and radially inwardly from the perimeter of the light dome such that an annular gap is formed between the light dome and the light curtain; and a light ring positioned to illuminate the gap between the light dome and the light curtain. The light curtain and window are sized and positioned such that no direct light from the light ring reaches the window. The system further comprises a camera having a lens facing the window to acquire images of an object on a side of the window opposite the camera. The images acquired by the camera can then be compared to stored images to determine whether the identity of the objects (which may be pharmaceutical tablets) is as expected.
Abstract:
A compact, optical measurement system has a non-flat detector array having multiple detector elements arranged on a flexible substrate in a monolithic fashion, one or more illumination sources arranged to provide more than one angle of incidence of light on a subject being measured, and a detection system in electrical communication with the detector array, the detection system arranged to receive inputs from the detector array and provide a measurement from the inputs. A method of measuring reflectance of a surface includes placing the surface adjacent a hemispherical detector array, illuminating the surface from a predetermined angle of incidence, simultaneously detecting reflectance at multiple emission angles using the hemispherical detector array, and repeating the illuminating and detecting processes at different angles of incidence. Optional arrays of lenses, baffles and filters may be employed by the system.
Abstract:
A defect detecting apparatus for detecting defects on a substrate sample (wafer) having circuit patterns such as interconnections. The defect detecting apparatus is provided with stages that can be moved arbitrarily in each of the X, Y, Z, and θ directions in a state that the substrate sample is mounted thereon, an illumination optical system for illuminating the circuit patterns from one or plural directions, and a detection optical system for detecting reflection light, diffraction light, or scattered light coming from an inspection region being illuminated through almost the entire hemispherical surface having the substrate sample as the bottom surface. The NA (numerical aperture) thereby falls within a range of 0.7 to 1.0. Harmful defects or foreign substances can be detected so as to be separated from non-defects such as surface roughness of interconnections.
Abstract:
A portable spectrophotometer is disclosed which is provided with a holding case accommodating opto-mechanical color-reading devices and an electronic control device provided with a microprocessor having data and program memories. The spectrophotometer further includes a power source which enables its self-sustained field use.
Abstract:
A system and procedure for the inspection of the surface of a semiconductor wafer ascertains that particulate contaminants have been adequately cleaned from the surface during the manufacture of integrated electric circuits. The wafer is advanced in a first direction and is optically scanned in a second direction, transverse to the first direction, for recording intensities of light reflected normally from the wafer surface as a function of location on the scan line. A high intensity reflection is indicative of a smooth flat surface suitable for inspection of particles by an integrating hemisphere with plural photodetectors therein. A weak reflection is indicative of undulations and patterned regions which are unfavorable for examination of particles on the wafer surface. A second scan is offset sideways to compensate for motion of the wafer so as to rescan the same line as the first scan. The photodetectors in the integrating sphere are gated on and off during the second scan at the locations of suitable inspection sites determined from the first scan.
Abstract:
A spark-induced breakdown spectroscopy apparatus (100) having a housing (105) with an inlet (110) and an outlet (115) that define an analyte flow path (120). A laser (280) defines a laser pathway (289) generally transverse to an intersecting the analyte flow path (120). A pair of electrodes (220), which have insulating shields (270), are mounted within the housing (105) and define a spark path (250). An optical detection element (125) defines an optical path (130). The apparatus (100) can be used to identify an aerosolized analyte.