Abstract:
The peak verify time for kinetic nephelometric measurements of reactions between antigens and antibodies is adjusted as a function of the magnitude of the peak rate order to reduce the time required for peak verification. The scatter signal is zeroed following the end of the peak verification period and the reaction is tested for antigen excess. Reactions during the antigen excess check having rates that exceed a threshold value are accepted as being valid, and no additional measurements are made for such samples. Reactions during the antigen excess check having rates that are less than the threshold value are rejected as being in antigen excess. Samples found to be in antigen excess are diluted and then reanalyzed.
Abstract:
The invention relates to a device and method for monitoring a chemical reaction proceeding from a first state to a second state by emitting and detecting radiation in ranges of interest for a spectral signature of the material undergoing the chemical reaction. Using the concept of optical spectral detection and identification, it is therefore possible to utilize a combination of specific emitters and detectors, optics and signal processing in order to identify materials and events.
Abstract:
An apparatus for evaluating physicochemical properties of sample materials contained in an array of vessels includes: a light detector; a light source for transmitting a light beam through the sample material in a vessel to the light detector; an analyzer for processing data from the light detector to determine concentration-related properties of the sample material as a function of time; and a mixing system. The mixing system includes: a plurality of magnetic stirrer elements, each for being placed in a sample material in a different one of the array of vessels; an array of magnetic drive elements, each associated with a different one of the array of vessels and being magnetically coupled with a magnetic stirrer element in an associated vessel; and a drive mechanism coupled to the array of magnetic drive elements for simultaneously moving each of the magnetic drive elements relative to an associated vessel.
Abstract:
An apparatus for evaluating physicochemical properties of sample materials contained in an array of vessels includes: a light detector; a light source for transmitting a light beam through the sample material in a vessel to the light detector; an analyzer for processing data from the light detector to determine concentration-related properties of the sample material as a function of time; and a mixing system. The mixing system includes: a plurality of magnetic stirrer elements, each for being placed in a sample material in a different one of the array of vessels; an array of magnetic drive elements, each associated with a different one of the array of vessels and being magnetically coupled with a magnetic stirrer element in an associated vessel; and a drive mechanism coupled to the array of magnetic drive elements for simultaneously moving each of the magnetic drive elements relative to an associated vessel.
Abstract:
A turbidity sensor is provided with a light source and a plurality of light sensitive components which are disposed proximate a conduit to measure the light intensity directly across the conduit from the light source and at an angle therefrom. The conduit is provided with a plurality of protrusions extending radially inward from the walls of the conduit to discourage the passage of air bubbles through the light beam of the sensor. The direct light beam and scattered light are compared to form a relationship that is indicative of the turbidity of the liquid passing through the conduit. The rate of change of turbidity is provided as a monitored variable.
Abstract:
A system for analyzing a chemical reaction provides control of the temperature and volume of the reagents to improve the accuracy and precision in quantitative measurements of specific proteins and other immunochemistries in body fluids. The reaction occurs in a cuvette within a nephelometric optics module. A sensor senses the temperatures of reaction buffer liquids as they flow into the cuvette, and a heat exchanging device increases or decreases the temperatures of the buffer liquids. A control circuit responsive to the temperature sensor controls the heat exchanging device to maintain the temperature of the buffer liquids and the cuvette within a selected temperature range. The system may also include a sample pickup station, a sample probe for withdrawing a selected sample from the sample pickup station, a sample preparation station, and transport device for carrying said sample from the sample preparation station to the reaction cuvette. The system may include an antibody pickup station, an antibody probe for withdrawing an antibody from the antibody pickup station, an antibody preparation station, and antibody transport device for carrying the antibody from the antibody preparation station to the reaction cuvette.
Abstract:
A method and apparatus (10) for determining the remission of a chemistry (106) which reacts with a medically significant component of a body fluid. The remission of the chemistry (106) changes as it reacts. The method and apparatus (10) include irradiating the chemistry (106) with a radiation source (182), detecting remissions of radiation from the chemistry (106) with a radiation detector (300), providing a radiation pathway (164) between the source (182) and the chemistry (106), providing a remission pathway (164) between the chemistry (106) and the detector (300), and detecting the rate of change of remission of the chemistry (106) with respect to time. The irradiating, detecting and rate detecting steps and apparatus comprise initially irradiating the chemistry (106) at a first time rate and detecting remissions therefrom, comparing remission data from remission readings spaced apart by a first number of intervening remission readings, and determining when the difference between compared readings exceeds a first predetermined limit. The time rate of irradiation of the chemistry is changed once the difference between compared readings exceeds the first limit. Remission data from remission readings spaced apart by a second number of intervening remission readings are then compared. The method and apparatus next determine when the difference between compared readings no longer exceeds a second predetermined limit. The last remission reading is then converted to the concentration of the medically significant component of the body fluid.
Abstract:
An improvement in rapid mixers for stopped flow spectrophotometers is disclosed. This improvement involves the dispersion of one solution from the bore of a disperser through notches into a flowing sheath of a second solution. The dispersed mixture is then mixed by passage through a mixer made up of a series of mixing rings with lands and grooves. The lands and grooves of adjoining rings are aligned so grooves are adjacent to lands, thus providing maximum mixing. The ratio of volumes of solutions mixed may vary from 1:1 to 40:1 by varying the number and size of notches in the end of the disperser tube. The viscosity ratio of the solutions mixed may vary from 1:1 to 100:1. Complete (greater than 99%) mixing occurs in less than one millisecond.
Abstract:
A detecting device is fitted so as to span a row of adjoining receptacles which are set in a reciprocating continuous motion, so that each receptacle passes within the scanning field of the detecting device. The latter sends the signals sequentially to a processor for elaboration into point curves showing the courses of each reaction through time. The row of receptacles may be set in a reciprocating motion by a rack, a stepping motor, a cam-type control or a coupling device, etc.
Abstract:
A procedure for photometric measurement of liquids in a reaction vessel in an automatic analyser, with a radiation flow having its course perpendicular to a row of the reaction vessel, so as to provide a reliable and positively operating measuring method for the photometric measurement of the liquids. The procedure is characterized in that the radiation flow and the reaction vessel are in movement relative to each other during the measurement. The invention affords the advantage of improved accuracy of measurement and improved reliability since it becomes possible, by measuring a moving object and at the same time calculating the mean of the radiant flux over accepted portions of the signal, to eliminate the error of measurement introduced by a dirt particle or by a scratch. The invention also concerns a row of reaction vessels employed in the procedure, wherein each reaction vessel is contiguous to the next and separated by a wall. The row of reaction vessels is characterized in that the bottom of each reaction vessel consists of a lens focussing luminescence radiation. This affords the advantage that the lens enables a luminiscence measurement to be performed simultaneously with the photometric measurement.