Abstract:
The invention pertains to an at least partially transparent touch-sensitive switching system comprising at least two electrodes provided with means for applying a voltage thereto and spaced from each other by a layer comprising at least one region that optically changes by applying the voltage, and at least one region comprising a piezoelectric material generating a voltage when applying pressure thereto.
Abstract:
A keypad assembly utilizes touch-detecting apparatus such as force sensors or touchpad assemblies for registering key presses. In exemplary embodiments, the keypad assembly is suitable for use in electronic devices such as a mobile telephones, calculators, hand-held computers, or the like, having single piece molded housings wherein the keypad assembly is at least partially encapsulated within the housing.
Abstract:
A keypad assembly utilizes touch-detecting apparatus such as force sensors or touchpad assemblies for registering key presses. In exemplary embodiments, the keypad assembly is suitable for use in electronic devices such as a mobile telephones, calculators, hand-held computers, or the like, having single piece molded housings wherein the keypad assembly is at least partially encapsulated within the housing.
Abstract:
The present invention comprises a signal generator for sending an electrical signal from an expandable, flexible layer of material, the signal generator comprising an upper layer of flexible, resilient material and a lower layer of flexible, resilient material which between them define a cavity for enclosing an expandable material such as a cellular foam or gas, whereupon localized distortion of one of the layers of flexible material, effects a signal generation within the structure, which is transmissible through a proper circuit to an outside electrical device. A circuit may be arranged adjacent a plurality of said keys which senses when several of said keys are depressed in a skewed or sideways manner, so as to effect movement of a cursor or pointer on a monitor in communication with a processing unit and said keyboard.
Abstract:
A keyboard (10) is disclosed including a flexible display membrane (36) overlying a plurality of pressure-responsive switches (28). The display membrane (36) can be electrically addressed to display location indicia (48) indicating the position of an underlying switch (46), and functional indicia (50) indication the function of the key (46). Informational text (58) can also be displayed on the flexible display (36) indicating the choice of switches to effect a desired function. An interactive exchange of information between the keyboard user and a processing system (14) can be achieved to accomplish a desired function. Graphical information can be input to the processing system (14) by an array (90) of pressure-responsive elements (91). Graphics input by the array (90) can be reproduced on an overlying portion (96) of the flexible display membrane (36).
Abstract:
The present invention includes a flexible, pressurizable keyboard made of resilient layers of plastic material, with molded keys which are deformable when pressed so as to send a signal to an electrical device. The keys are arranged with a flexible electrical circuit thereattached, which when depressed, establish a proper complete circuit.
Abstract:
The present invention comprises a signal generator for sending an electrical signal from an expandable, flexible layer of material, the signal generator comprising an upper layer of flexible, resilient material and a lower layer of flexible, resilient material which between them define a cavity for enclosing an expandable material such as a cellular foam or gas, whereupon localized distortion of one of the layers of flexible material, effects a signal generation within the structure, which is transmissible through a proper circuit to an outside electrical device. A circuit may be arranged adjacent a plurality of said keys which senses when several of said keys are depressed in a skewed or sideways manner, so as to effect movement of a cursor or pointer on a monitor in communication with a processing unit and said keyboard.
Abstract:
A keyswitch-integrated pointing assembly in which a plurality of substantially planar force sensing elements are disposed on a planar surface adjacent a keyswitch on a keyboard. The keyswitch includes a plunger which extends downwardly from a key cap for actuating a switch at the lower end of vertical key cap travel. The key cap engages an indexing surface when fully depressed which transmits force applied to the key cap to the force sensing elements. The force sensing elements are sandwiched between a pair of opposing plates thereby biasing the elements into a substantially linear operating region when no force is applied to the key cap.
Abstract:
A self-powered switching system using electromechanical generators generates power for activation of a latching relay, switch, solenoid or latch pin The electromechanical generators comprise electroactive elements that may be mechanically actuated to generate electrical power The associated signal generation circuitry may be coupled to a transmitter for sending RF signals to a receiver which actuates the latching relay The use of mechanically activated membrane switches on the deflector or on a keypad allows multiple code sequences to be generated for activating electrical appliances The system also uses a communications protocol allowing the receivers to respond to signals from transmitters and/or repeaters.