Abstract:
A flame detector including an ultraviolet emitter configured to emit ultraviolet light at a strike voltage less than or equal to approximately 230 volts. A method of manufacturing an ultraviolet emitter for use in a flame detector, the ultraviolet emitter including a hermetically sealed, alkali rich, ultraviolet transmissive glass envelope, the method including: (a) wrapping an envelope exterior surface with a conductive material; (b) performing a first injection of at least one non-radioactive gas into the glass envelope at a first pressure; (c) applying a voltage bias to the glass envelope; (d) baking the hermetically sealed, alkali rich, ultraviolet transmissive glass envelope at a baking temperature for a baking duration of time; (e) cooling the hermetically sealed, alkali rich, ultraviolet transmissive glass envelope to a desired temperature; and (f) performing a second injection of at least one non-radioactive gas into the glass envelope at a second pressure.
Abstract:
The invention relates to a detector plate consisting of a carrier plate, especially an injection-moulded carrier plate, having a plurality of detector elements for detecting ionizing radiation. The detector elements function according to the principle of a Geiger-Müller counter. The invention suggests that, to simplify the production process and to save cost, the anode and/or the cathode should be in the form of a metallization on the carrier plate of the detector plate, said metallization(s) not being present in a single plane only. This offers multiple options for designing the interior used as ionization chamber and for arranging the electrodes in this space. The options for contact with additional printed circuit boards also turn out to be highly advantageous. This further has an advantageous effect on the production process and on the qualities of the radiation measurement devices using detector plates of this kind.
Abstract:
A plasma panel based ionizing-particle radiation detector includes a first substrate and a second substrate coupled to the first substrate by a hermetic seal. The second substrate is an ultra-thin substrate. The detector further includes a discharge gas between the first and second substrate and at least one second electrode electrically coupled to a first electrode and defining at least one pixel with the first electrode. The second electrode is coupled to the first substrate and a first impedance is coupled to the first electrode. The detector further includes a power supply coupled to at least the first or second electrode and a first discharge event detector circuitry is coupled to at least one of the first or second electrodes for detecting a gas discharge counting event in the electrode. The detector further includes a plurality of pixels, each pixel capable of outputting a gas discharge pulse upon interaction with ionizing-radiation. Each gas discharge pulse is counted by the detector as having approximately an equal value and circuitry detects if a gas discharge pulse is output from the pixels, and counts each gas discharge pulse as an individual event.
Abstract:
According to the invention, sensors which require a high voltage supply and require little current at least for temporary periods are supplied by an blocking oscillator with a high degree of efficiency. The efficiency of said blocking oscillator is due to the low inverse current of the rectifier, the blockage recovery time being short at the same time, the low consumption of the controlling system, and economical and therefore inexpensive voltage measurement. In particular, batteries with an especially long life can be used.
Abstract:
A flame detector including an ultraviolet emitter configured to emit ultraviolet light at a strike voltage less than or equal to approximately 230 volts. A method of manufacturing an ultraviolet emitter for use in a flame detector, the ultraviolet emitter including a hermetically sealed, alkali rich, ultraviolet transmissive glass envelope, the method including: (a) wrapping an envelope exterior surface with a conductive material; (b) performing a first injection of at least one non-radioactive gas into the glass envelope at a first pressure; (c) applying a voltage bias to the glass envelope; (d) baking the hermetically sealed, alkali rich, ultraviolet transmissive glass envelope at a baking temperature for a baking duration of time; (e) cooling the hermetically sealed, alkali rich, ultraviolet transmissive glass envelope to a desired temperature; and (f) performing a second injection of at least one non-radioactive gas into the glass envelope at a second pressure.
Abstract:
A plasma panel based ionizing-particle radiation detector includes a first substrate and a second substrate coupled to the first substrate by a hermetic seal. The second substrate is an ultra-thin substrate. The detector further includes a discharge gas between the first and second substrate and at least one second electrode electrically coupled to a first electrode and defining at least one pixel with the first electrode. The second electrode is coupled to the first substrate and a first impedance is coupled to the first electrode. The detector further includes a power supply coupled to at least the first or second electrode and a first discharge event detector circuitry is coupled to at least one of the first or second electrodes for detecting a gas discharge counting event in the electrode. The detector further includes a plurality of pixels, each pixel capable of outputting a gas discharge pulse upon interaction with ionizing-radiation. Each gas discharge pulse is counted by the detector as having approximately an equal value and circuitry detects if a gas discharge pulse is output from the pixels, and counts each gas discharge pulse as an individual event.
Abstract:
The present specification discloses a radiological threat monitoring system capable of withstanding harsh environmental conditions. The system has (a) one or more cables for measuring a signal induced by a radiological material emitting ionizing radiation when the radiological material comes within a predefined distance of the cables; (b) one or more stations connected with one or more cables for measuring and recording the induced signal; and (c) a central station in communication with one or more stations for gathering the recorded measurements. Radiological material includes fissile threat material such as a 'Special Nuclear Material' (SNM).
Abstract:
Un détecteur de type Geiger-Mueller sensiblement stable, portable et à fenêtre ouverte, de détection d'un écoulement gazeux peut contrôler un rayonnement ionisant. L'invention décrit également un procédé de contrôle d'un rayonnement ionisant.
Abstract:
A Geiger-Muller tube designed for use in an environment (for example, mounted on a rock drill) where subjected to mechanical shock and vibration has a tensioned anode wire (1) secured between first and second mounts (11,21) and (12,22) at opposite ends of the tube envelope. The wire tension is adjusted to a high value with a screwible-adjustment means (22,23,24) which is locked (*25) in the adjusted position, so that the natural frequency of vibration of the tensioned wire 1 does not resonate with (and may be much higher than) the frequencies to which the tube is subjected in use. The wire frequency is typically in excess of 400Hz and even 500Hz. The adjustment means (22,23,24) may be included in the mount (12,22) via which the envelope is evacuated and back-filled with the ionizible gas, and a gas-tight seal (30) can be provided around this part of the mount (12,22), for example by sealing off the gas pump tube. However the adjustment means may be designed into another part of the tube, for example using telescopic parts of the envelope whose sliding junction is made gas tight with a flexible seal.