Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
Abstract:
The current invention concerns a method and a device for generating a signal representing data. The method for generating a signal comprises modulating a portion (1 P, 2P) of the data using phase shift keying and spreading the modulated portion over the at least one frequency base band using at least one highly auto-correlated spread code sequence (1C, 2C) associated with the frequency base band. The method for generating a signal is characterized by delaying, according to a delay determined using a remainder (1R, 2R) of the data (ID), the at least one spread code sequence (1C, 2C) by a time delay wherein the modulated portion (1 MP, 2MP) is spread according the delayed spread code sequence (1DC, 2DC). This allows for additional bit rate through encoding of the data remainder in the delay.
Abstract:
A method of performing a discrete Fourier transform (DFT) on one or more data samples in a global navigation satellite system baseband tracking channel is provided. The method comprises loading a pseudorandom noise code generator with a constant value in the baseband tracking channel; setting a tracking loop integration time according to a selected frequency resolution; updating a carrier generator with a selected DFT frequency in the baseband tracking channel; integrating a data sample in the baseband tracking channel; and storing the integrated data sample in a DFT bin. The method determines whether all DFT bins have been received, and if all DFT bins have not been received, the method repeats starting with updating the carrier generator, until all DFT bins have been received.
Abstract:
L'invention concerne un procédé de validation de synchronisation entre un récepteur de géolocalisation (12) avec un satellite émetteur identifié, le récepteur (12) étant apte à recevoir un signal radioélectrique composite comportant une pluralité de signaux de navigation émis chacun par un satellite émetteur faisant partie d'une constellation de satellites (4, 6, 8), ainsi qu'un procédé de validation de synchronisation entre un récepteur de géolocalisation (12) avec un satellite émetteur (10) lors d'une phase d'acquisition d'un signal d'augmentation comprenant des données de correction et d'intégrité de géolocalisation. Le procédés de l'invention comportent, pour chaque satellite émetteur (4, 6, 8, 10) identifié, l'extraction de mots reçus d'éphéméride ou de type quelconque du signal reçu associé au satellite identifié au fur et à mesure de sa réception, et la comparaison d'au moins un mot reçu avec au moins un mot de même rang reçu ou mémorisé pour ledit satellite identifié et/ou pour au moins un autre satellite. La validation ou non de la synchronisation avec ledit satellite émetteur identifié est fonction d'une probabilité de fausse alarme et/ou une probabilité de non-détection prédéterminée.
Abstract:
The invention relates to a pulsed UWB receiver comprising an RF stage (501) followed by a baseband processing stage (502). The baseband processing stage comprises a Rake filter (550) having a plurality of fingers (551 1 , ..., 551K), each finger comprising an integrator for integrating the baseband signal during an acquisition window, a control module (580), and a detecting module (590) estimating the symbols received from the integration results. During a synchronisation phase, the control module (580) controls the respective positions of the acquisition windows associated with the different fingers, so as to scan at a reception interval, said RF stage operating, during this synchronisation phase, only during said acquisition plurality.
Abstract:
A method for generating and transmitting positioning signals using a network of terrestrial beacons, comprising generating, at a first beacon, a first positioning signal using a first pseudorandom number sequence, generating, at a second beacon, a second positioning signal using a second pseudorandom number sequence, broadcasting the first positioning signal during a first time slot of a transmission frame, and broadcasting the second positioning signal during a second time slot of the transmission frame.
Abstract:
A method for generating and transmitting positioning signals using a network of terrestrial beacons, comprising generating, at a first beacon, a first positioning signal using a first pseudorandom number sequence, generating, at a second beacon, a second positioning signal using a second pseudorandom number sequence, broadcasting the first positioning signal during a first time slot of a transmission frame, and broadcasting the second positioning signal during a second time slot of the transmission frame.