Abstract:
PROBLEM TO BE SOLVED: To provide a service server device that is easy to deal with correction of an error of a task performed based on call contents of a speaker.SOLUTION: A service server device comprises: a service activation unit 250 which receives an instruction to perform another task different from a task performed by an application related to voice communication; a telephone/call control enabler 201 which records voice of a speaker during voice communication between a plurality of voice communication terminal devices; a voice recognition enabler 203 which performs a task on the basis of the recorded voice, and creates task data including text data indicating a result of performing the task and voice data indicating the result of the performing; a text translation enabler 204; and a voice synthesis enabler 202. The service server device provides the task data for at least one of the plurality of voice communication terminal devices or another communication terminal device associated with the voice communication terminal devices.
Abstract:
Some embodiments of the present invention include pairing two wireless devices by placing at least one of two devices in a pairing mode; performing at least one pairing motion event with at least one of the wireless devices to satisfy at least one pairing condition; detecting satisfaction of the at least one pairing condition; and pairing the two wireless devices in response to detecting satisfaction of the at least one pairing condition. Numerous other aspects are provided.
Abstract:
A service server apparatus is provided which can easily cope with a correction of an error of a task performed based on the content of verbal speeches of a speaker. The service server apparatus includes a service activating unit that receives an instruction for performing a different task from a task performed by an application relating to a speech communication, a telephone/call control enabler that records verbal speeches of the speaker during a speech communication between a plurality of speech communication terminal device, a speech recognizing enabler which performs a task based on the recorded speeches and which generates task data including text data representing the result of the performance and speech data representing the result of the performance, a text translating enabler, and a speech synthesizing enabler. This service server apparatus provides the task data to at least either one of the plurality of speech communication terminal devices or another communication terminal device associated with the speech communication terminal device.
Abstract:
A networked multimedia system (10) comprises a plurality of networks (40) and at least one storage server (100). A signal path interconnects the workstations (12) and the storage server (100). Each workstation (40) includes video and audio reproduction capabilities, as well as video and audio capture capabilities. Any given storage server (100) comprises a set of storage cells (120) that operate under the direction of a storage cell manager (160). A storage cell (120) may include one or more encoding (132) and transcoding converters configured to convert or transform audio and video signals originating at a workstation into a form suitable for storage. A storage cell (120) may further include one or more decoding converters (134) configured to convert stored signals into a form suitable for audio and video signal reproduction at a workstation. Each storage cell (120) additionally includes at least one storage device (150) and storage device controller (152) capable of storing, for later retrieval, signals generated by one or more converters. The storage cell controller responds to signals received from the workstations (40), and oversees the operation of the storage cells to facilitate the storage of converted audio and video signals in at least one file that can be simultaneously accessed by one or more application programs executing on one or more workstations.
Abstract:
A networked multimedia system (10) comprises a plurality of networks (40) and at least one storage server (100). A signal path interconnects the workstations (12) and the storage server (100). Each workstation (40) includes video and audio reproduction capabilities, as well as video and audio capture capabilities. Any given storage server (100) comprises a set of storage cells (120) that operate under the direction of a storage cell manager (160). A storage cell (120) may include one or more encoding (132) and transcoding converters configured to convert or transform audio and video signals originating at a workstation into a form suitable for storage. A storage cell (120) may further include one or more decoding converters (134) configured to convert stored signals into a form suitable for audio and video signal reproduction at a workstation. Each storage cell (120) additionally includes at least one storage device (150) and storage device controller (152) capable of storing, for later retrieval, signals generated by one or more converters. The storage cell controller responds to signals received from the workstations (40), and oversees the operation of the storage cells to facilitate the storage of converted audio and video signals in at least one file that can be simultaneously accessed by one or more application programs executing on one or more workstions
Abstract:
An echo canceler-suppressor speakerphone arrangement effectively addresses the limitations of regeneration and reverberant return echo inherent in the design of speakerphones. The tendency for regeneration is eliminated by employing adaptive echo cancellation in the receive path of the speakerphone arrangement to cancel speakerphone talker echo across a hybrid and thereby reduce the local loop gain to below unity. And the generation of a reverberant return echo to the far-end party is avoided by employing adaptive echo suppression in the transmit path of the speakerphone arrangement. Near-full and full duplex operation are regularly achieved since the receive path remains open at all times and transmit path has its gain reduced only to the level necessary to suppress excessive reverberant return echo.
Abstract:
Some embodiments of the present invention include placing a smart device and a peripheral device in pairing mode; detecting at least one pairing motion event with a dual use piezo circuit within the peripheral device; transmitting an indication of the occurrence of the at least one pairing motion event to the smart device; receiving in the smart device the indication of the occurrence of the at least one pairing motion event in satisfaction of at least one pairing condition; and pairing the smart device with the peripheral device in response to satisfaction of the at least one pairing condition. Numerous other aspects are provided.
Abstract:
Embodiments include determining a reference value on a first device; broadcasting the reference value from the first device; connecting the first device to a second device if the second device requests data from the first device; transmitting any new data if the second device requests data from the first device; generating and broadcasting a new reference value if the first device has new data; broadcasting the reference value from the first device again if the first device does not have new data; receiving a reference value in the second device from the first device; and if the received reference value does not match the stored reference value then transmitting a request from the second device for new data from the first device, receiving new data from the first device into the second device, and storing the received reference value as a new stored reference value. Numerous other aspects are provided.