Abstract:
Film gate for a virtual contact scanner includes a base having a precision site adapted to receive a solid-state scanner assembly so as to position the sensor photosites at a precise spacing from the film image plane. A separate circuit board carrying control circuits for the scanner assembly is clamped over the scanner with contact terminals aligned with mating input/output terminals of the scanner assembly. Preferably the scanner terminals are aligned with open slots in the substrate and electrical contact is made between the scanner and circuit board terminals by means of compressible electrically conductive pads. Clamping force is concentrated over the region of electrical contact between the circuit board and scanner terminals to assure good electrical contact.
Abstract:
An original reading unit is provided that is superior in the performance of the adjustment of line sensors. According to the present invention, between a unit base and a transparent original support plate, multiple sensor assemblies are arranged, to form a zigzag pattern, as a first array for reading an original and a second array for reading the original following the first array. Each of the sensor assemblies includes a sensor holder, a line sensor and a focus setup unit. Each of the sensor holders, which serve as fulcrums, are rotatable at a single pivot (a rotation center), along the wall of a unit base that is parallel to the original support plate. When the sensor holders are rotated and positioned at predetermined locations, they are fixed to the wall. The line sensors 51 are held, relative to the sensor holders, in the main scanning direction and in the sub-scanning direction, and are moved in an approaching or separating direction in which the line sensors approach or are separated from the wall and the original support plate. The focus setup units, each of which includes coil springs and spacers, move the line sensors 51 in the approaching or separating direction, and position the line sensors 51 at locations whereat focuses are adjusted.
Abstract:
A image reading apparatus includes a plurality of point light sources, arranged in a straight line state, configured to output light for lighting a document situated on a contact glass from a lower side of the contact glass, a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to lead the light output from the point light sources so as to irradiate along a main scanning direction toward the document situated on the contact glass, and a photoelectric conversion element configured to receive reflection light from the document. The light leading member includes positioning means configured to make a gap between each of the point light sources arranged in a line state and the light leading member constant and make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
An integrated image module for a document scanner includes a one piece die cast housing having a datum element and a support element. An imaging sensor array is enclosed in the housing. An array bias element urges the imaging sensor array against the datum element to provide accurate placement of the sensor array relative to the housing. A transport mechanism is attached to the housing so that the position of the transport mechanism accurately corresponds to the position of the imaging sensor array. The lens and the lamp for illumination are also attached to the housing so that the primary components of the imaging portion of the scanner are contained in a single module.
Abstract:
In a lens focusing and holding arrangement for an imaging system (60) including a photosensor array (510), the lens (570) is in contact with a reference surface or surfaces (274, 276) formed within the imaging system housing (200) and is translatable along the surface (274, 276) in directions toward and away from the photosensor array (510) in order to adjust the focus of the imaging system (60). A lens retention clip (600) is provided to secure the lens (570) within the imaging system housing (200) and to cause translational movement of the lens (570) along the imaging system reference surface (274, 276). When focusing the imaging system (60), the lens retention clip (600) is in a first operating condition in which the lens retention clip (600) applies a relatively small force tending to hold the lens (570) in contact with the housing reference surface (274, 276). After the desired focus has been set, the lens retention clip (600) is placed in a second operating condition in which the lens retention clip (600) applies a relatively high force tending to hold the lens (570) in contact with the housing reference surface (274, 276), thus locking the lens (570) in place.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
An original reading unit has first and second arrays of sensor assemblies extending in a main scanning direction for performing readings of an original document. Each of the sensor assemblies includes a sensor holder that undergoes pivotal movement about a single rotation center as a fulcrum along a wall of a unit base to bring the sensor holder to a predetermined position whereat the sensor holder can be fixed to the units base wall. A line sensor is mounted relative to the sensor holder so as not to be shifted in the main scanning direction or in a sub-scanning direction, and to undergo movement in an approaching or a separating direction so as to be brought into contact with or separated from, respectively, the unit base wall and an original support plate attached to the unit base. A focus setup unit moves the line sensor in the approaching or separating direction and positions the line sensor at a location whereat focus can be adjusted.
Abstract:
An optical component structure includes an elongate optical component, a support member to which the optical component is fixed, and an adhesive for bonding the optical component to the support member. The optical component is provided with a contacting portion and a bonding portion different in position from the contacting portion. The contacting portion is brought into direct contact with the support member in a direction perpendicular to the longitudinal direction of the optical component. The adhesive is applied to the bonding portion, but not to the contacting portion. Examples of the optical component include a linear light source unit and a lens unit used in an image sensor module.
Abstract:
An image reading apparatus, including point light sources, arranged in a straight line state, configured to output light to light a document, and a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to receive the light incident on a surface of the light leading member, and to lead the received light so as to irradiate along a main scanning direction toward the document. The light leading member includes a positioning unit configured to make a gap between one of the point light sources arranged in a line state and the light leading member the same as a gap between another of the point light sources and the light leading member, and to make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
An improved structure of carriage module has a datum board with a very flat surface, a linear light-source, a pair of side boards and a light-transforming module. The datum board has a flat-rigid connecting surface formed with a plurality of screw holes therein. The linear light-source is fixed at a front edge of the datum board for providing light. The side boards are respectively disposed on two sides of the connecting surface and assembled with a plurality of reflecting mirrors therebetween for reflecting light. The light-transforming module is assembled on a middle portion of the connecting surface for receiving an image and transforming the image into an electric signal. The datum board has an axle sleeve mounted on one side thereof for the carriage module to slide thereon.