Abstract:
An image sensor has a supporting member for integrally supporting a reading system including illuminating means for illuminating an original document, a photoelectrically converting means and imaging means for imaging light reflected by the surface of the original document onto the photoelectrically converting means, and has a member disposed on the side surface of the supporting member. The image sensor has two or more substantially independent spaces formed in the supporting member. The illuminating means, the imaging means and the photoelectrically converting means are accommodated in one of the spaces.
Abstract:
An imager (50-1) for imaging a document (12) moving in a document track (14) in a table top document processing machine (10) includes a housing which is made of several portions which are designed to be assembled quickly with a minimum of fasteners. A first line of green LEDs (82-1) and a second line of red LEDs (82-2) are located in the housing to illuminate a scanning line (84) from which image data about the document is obtained by an optical system including a CCD device (100). The imager (50-1) is also designed so that it can be used on either side of the document track (14) to image the front or rear of the document. When two such imagers are used, a white reference member (198) located in one of the imagers is used by the other imager for calibrating the imager to ensure repeatable and uniform data.
Abstract:
An image sensor has a supporting member for integrally supporting a reading system including illuminating means for illuminating an original document, a photoelectrically converting means and imaging means for imaging light reflected by the surface of the original document onto the photoelectrically converting means, and has a member disposed on the side surface of the supporting member. The image sensor has two or more substantially independent spaces formed in the supporting member. The illuminating means, the imaging means and the photoelectrically converting means are accommodated in one of the spaces.
Abstract:
An image sensor includes: a lens configured to focus light irradiated toward an object to be read and reflected by the object to be read; a sensor configured to receive light focused by the lens; a sensor board configured to mount thereon the sensor; a board retaining plate, having a casing attachment surface extending in the X direction and a sensor board attachment reference surface that is in contact with the +Y side of the sensor board and is formed in a side surface of the casing attachment surface, and configured to retain the sensor board; and a first casing configured to fix or retain the board retaining plate by fastening of a surface of the casing attachment surface.
Abstract:
A light irradiation device includes a light source, a light guide member, and a holding member. The light guide member includes an incident surface, an exit surface, and a held surface. The incident surface has an elongated shape in a main scanning direction and faces a light emitting surface of the light source. The light guide member includes a securing structure in each of both end portions in the main scanning direction, which are out of a light guide area of the light guide member. The securing structure in one end portion is an engagement lug structure protruding to penetrate into a through-hole of the holding member, including a lug on a leading end, and engaging the holding member. The securing structure on another end portion is a fastening structure having a fastening hole penetrated with a fastening member and being secured to the holding member with the fastening member.
Abstract:
A development device includes an imaging lens and light shielding walls. The imaging lens includes a body part having a constant diameter and both end parts arranged at both ends in an optical axial direction having diameters larger than the body part to capture a reflected light from a document onto an imaging part. The light shielding walls has a space with an interval larger than the diameter of the body part and smaller than the diameters of the both end parts, allowing the body part of the imaging lens to be arranged in the space, and shielding a light in the optical axial direction.
Abstract:
A light projecting device includes a base board, a light guiding member, a holding member, a cover, and a positioning member. A plurality of light-emitting elements are arranged in a line on the base board in a main scan direction. The light guiding member faces a radiation surface of the light-emitting elements and guides light projected from the light-emitting elements to an irradiation region of an illuminated object. The holding member holds the base board. The cover covers the base board and the light guiding member. The positioning member positions the light guiding member on the holding member. The holding member and the cover sandwich the light guiding member positioned by the positioning member. The light projecting device includes the holding member, the light guiding member, the base board, and the cover as a single unit which is detachably mountable relative to a chassis of the light projecting device.
Abstract:
A scanning module capable of finely tuning the optical length comprises a lamp tube, a base, a photosensitive substrate, and an adjustment unit. The lamp tube provides a required light source for a document to be scanned. The base has a reflective mirror set and a camera lens. The reflective mirror set is used to receive light from the document, and transmits the light to the camera lens for focusing. The photosensitive substrate is used to convert light outputted by the camera lens into electronic signals. The adjustment unit is used to adjust the optical length between the base and the photosensitive substrate. The total optical length can thus be adjusted to correct the inaccuracy of magnification. Or the distance between the camera lens and the photosensitive substrate can be adjusted to align the focal length within the allowable inaccuracy of magnification to achieve an output image of better quality.