Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
For realizing widening of a light scanning angle and excellent durability, the optical scanning actuator includes a movable unit that supports an optical element, a plurality of leaf springs having a thin plate shape with one end portion being fixed and another end portion being attached to the movable unit, and an electromagnetic driving unit including a magnet, a yoke laminated on the magnet to form a closed magnetic circuit together with the magnet, and a coil held by the movable unit. The coil is positioned in a gap between the magnet and the yoke such that opening plane of the coil is substantially orthogonal to a laminating direction of the magnet and the yoke. The movable unit is driven by an electromagnetic force applied to the coil.
Abstract:
A scanning device includes a housing, a transparent plate, an image acquiring module, a light source module and an elastic member. The transparent plate for supporting an original is mounted on an opening of the housing. The image acquiring module for acquiring an image of the original is movable in a first direction in the housing. The light source module for emitting light to illuminate the original is movable in a second direction perpendicular to the first direction on the image acquiring module. The elastic member for pushing the light source module towards the transparent plate connects the light source module to the image acquiring module. When the transparent plate is not pressed, a distance between the transparent plate and the light source module is kept such that the transparent plate contacts the light source module without losing its degree of freedom when the transparent plate is pressed.
Abstract:
The separation between the light source module for a film scanner and the protection window for pressing against the film document is minimized to increase light intensity by inserting low friction material between the scanning light source module and the protection window. The pressure is exerted by means of a spring or gravity.
Abstract:
An image reading apparatus (10) includes a light source (20) that emits light in a main scanning direction to a subject to be read, a light receiving unit (40) that receives light reflected by the subject to be read, and an optical system (30) that images the light reflected by the subject to be read and guides the light to the light receiving unit (40). The optical system (30) includes a reflector mirror (33) that reflects the light reflected by the subject to be read, and an optical element (35) that is disposed adjacent to the reflector mirror (33) and images the light reflected by the subject to be read. The optical element (35) is held by the reflector mirror (33).
Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
To provide an optical scanning actuator that is capable of realizing widening of a light scanning angle and is excellent in durability, the optical scanning actuator includes a movable unit that supports an optical element, a plurality of leaf springs having a thin plate shape with one end portion being fixed and another end portion being attached to the movable unit, and an electromagnetic driving unit including a magnet, a yoke laminated on the magnet to form a closed magnetic circuit together with the magnet, and a coil held by the movable unit. The coil is positioned in a gap between the magnet and the yoke such that opening plane of the coil is substantially orthogonal to a laminating direction of the magnet and the yoke. The movable unit is driven by an electromagnetic force applied to the coil.
Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
A document scanner carriage (20) housing contains a pair of spaced mirrors (34,36) whose spacing and parallelism is precisely maintained by floating metal spacer plates (60,62) which are not affixed to the housing. Spaced springs (35) urge one of the mirrors (34,36) into engagement with the spacer plates (60,62), the other mirror(34,36) being referenced to the molded plastic housing (50). The parallel facing image plane sides of the mirrors (34,36) are substantially unobstructed by the spacer plates (60,62) which contact them thus allowing the scanner (10) to efficiently use a substantial proportion of the image planes of the mirrors (34,36) and occupy a comparatively small footprint. The floating spacer plates (60,62) and mirrors (34,36) are cushioned against shock and vibration by compressed elastomeric pads (80,81,82,83) on the underside of the housing cover (30) which allows the spacing and parallelism of the mirrors (34,36) to be maintained without direct affixation of the mirrors (34,36) or spacer plates (60,62) to the housing (50).
Abstract:
A scanning head comprises a support member (2) for supporting the head in pressing contact with a platen (26). The support member has lower strength portions (A) spaced longitudinally of the head, and higher strength portions (B) alternate with the lower strength portions. The support member is easily bendable at the lower strength portions, and the higher strength portions are urged by springs (27) toward the platen. Thus, the head can come into intimate pressing contact with the platen even if the surface flatness of the support member as a whole is not strictly realized.